935 resultados para root bounds


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this essay, a method for comparing the asymptotic power of the multivariate unit root tests proposed in Phillips & Durlauf (1986) and Flˆores, Preumont & Szafarz (1996) is proposed. In order to determine the asymptotic power of the tests the asymptotic distributions under the null hypothesis and under the set of alternative hypotheses described in Phillips (1988) are determined. In addition, a test which combines characteristics of both tests is proposed and its distributions under the null hypothesis and the same set of alternative hypotheses are determined. This allows us to determine what causes any difference in the asymptotic power of the two tests against the set of alternative hypotheses considered

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Empirical evidence suggests that real exchange rate is characterized by the presence of near-unity and additive outliers. Recent studeis have found evidence on favor PPP reversion by using the quasi-differencing (Elliott et al., 1996) unit root tests (ERS), which is more efficient against local alternatives but is still based on least squares estimation. Unit root tests basead on least saquares method usually tend to bias inference towards stationarity when additive out liers are present. In this paper, we incorporate quasi-differencing into M-estimation to construct a unit root test that is robust not only against near-unity root but also against nonGaussian behavior provoked by assitive outliers. We re-visit the PPP hypothesis and found less evidemce in favor PPP reversion when non-Gaussian behavior in real exchange rates is taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes unit tests based on partially adaptive estimation. The proposed tests provide an intermediate class of inference procedures that are more efficient than the traditional OLS-based methods and simpler than unit root tests based on fully adptive estimation using nonparametric methods. The limiting distribution of the proposed test is a combination of standard normal and the traditional Dickey-Fuller (DF) distribution, including the traditional ADF test as a special case when using Gaussian density. Taking into a account the well documented characteristic of heavy-tail behavior in economic and financial data, we consider unit root tests coupled with a class of partially adaptive M-estimators based on the student-t distributions, wich includes te normal distribution as a limiting case. Monte Carlo Experiments indicate that, in the presence of heavy tail distributions or innovations that are contaminated by outliers, the proposed test is more powerful than the traditional ADF test. We apply the proposed test to several macroeconomic time series that have heavy-tailed distributions. The unit root hypothesis is rejected in U.S. real GNP, supporting the literature of transitory shocks in output. However, evidence against unit roots is not found in real exchange rate and nominal interest rate even haevy-tail is taken into a account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bounds on the distribution function of the sum of two random variables with known marginal distributions obtained by Makarov (1981) can be used to bound the cumulative distribution function (c.d.f.) of individual treatment effects. Identification of the distribution of individual treatment effects is important for policy purposes if we are interested in functionals of that distribution, such as the proportion of individuals who gain from the treatment and the expected gain from the treatment for these individuals. Makarov bounds on the c.d.f. of the individual treatment effect distribution are pointwise sharp, i.e. they cannot be improved in any single point of the distribution. We show that the Makarov bounds are not uniformly sharp. Specifically, we show that the Makarov bounds on the region that contains the c.d.f. of the treatment effect distribution in two (or more) points can be improved, and we derive the smallest set for the c.d.f. of the treatment effect distribution in two (or more) points. An implication is that the Makarov bounds on a functional of the c.d.f. of the individual treatment effect distribution are not best possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper derives both lower and upper bounds for the probability distribution function of stationary ACD(p, q) processes. For the purpose of illustration, I specialize the results to the main parent distributions in duration analysis. Simulations show that the lower bound is much tighter than the upper bound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new multivariate test for the detection ofunit roots is proposed. Use is made ofthe possible correlations between the disturbances of difIerent series, and constrained and unconstrained SURE estimators are employed. The corresponding asymptotic distributions, for the case oftwo series, are obtained and a table with criticai vaIues is generated. Some simulations indivate that the procedure performs better than the existing alternatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents semiparametric estimators for treatment effects parameters when selection to treatment is based on observable characteristics. The parameters of interest in this paper are those that capture summarized distributional effects of the treatment. In particular, the focus is on the impact of the treatment calculated by differences in inequality measures of the potential outcomes of receiving and not receiving the treatment. These differences are called here inequality treatment effects. The estimation procedure involves a first non-parametric step in which the probability of receiving treatment given covariates, the propensity-score, is estimated. Using the reweighting method to estimate parameters of the marginal distribution of potential outcomes, in the second step weighted sample versions of inequality measures are.computed. Calculations of semiparametric effciency bounds for inequality treatment effects parameters are presented. Root-N consistency, asymptotic normality, and the achievement of the semiparametric efficiency bound are shown for the semiparametric estimators proposed. A Monte Carlo exercise is performed to investigate the behavior in finite samples of the estimator derived in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper constructs a unit root test baseei on partially adaptive estimation, which is shown to be robust against non-Gaussian innovations. We show that the limiting distribution of the t-statistic is a convex combination of standard normal and DF distribution. Convergence to the DF distribution is obtaineel when the innovations are Gaussian, implying that the traditional ADF test is a special case of the proposed testo Monte Carlo Experiments indicate that, if innovation has heavy tail distribution or are contaminated by outliers, then the proposed test is more powerful than the traditional ADF testo Nominal interest rates (different maturities) are shown to be stationary according to the robust test but not stationary according to the nonrobust ADF testo This result seems to suggest that the failure of rejecting the null of unit root in nominal interest rate may be due to the use of estimation and hypothesis testing procedures that do not consider the absence of Gaussianity in the data.Our results validate practical restrictions on the behavior of the nominal interest rate imposed by CCAPM, optimal monetary policy and option pricing models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents calculations of semiparametric efficiency bounds for quantile treatment effects parameters when se1ection to treatment is based on observable characteristics. The paper also presents three estimation procedures forthese parameters, alI ofwhich have two steps: a nonparametric estimation and a computation ofthe difference between the solutions of two distinct minimization problems. Root-N consistency, asymptotic normality, and the achievement ofthe semiparametric efficiency bound is shown for one ofthe three estimators. In the final part ofthe paper, an empirical application to a job training program reveals the importance of heterogeneous treatment effects, showing that for this program the effects are concentrated in the upper quantiles ofthe earnings distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When estimating policy parameters, also known as treatment effects, the assignment to treatment mechanism almost always causes endogeneity and thus bias many of these policy parameters estimates. Additionally, heterogeneity in program impacts is more likely to be the norm than the exception for most social programs. In situations where these issues are present, the Marginal Treatment Effect (MTE) parameter estimation makes use of an instrument to avoid assignment bias and simultaneously to account for heterogeneous effects throughout individuals. Although this parameter is point identified in the literature, the assumptions required for identification may be strong. Given that, we use weaker assumptions in order to partially identify the MTE, i.e. to stablish a methodology for MTE bounds estimation, implementing it computationally and showing results from Monte Carlo simulations. The partial identification we perfom requires the MTE to be a monotone function over the propensity score, which is a reasonable assumption on several economics' examples, and the simulation results shows it is possible to get informative even in restricted cases where point identification is lost. Additionally, in situations where estimated bounds are not informative and the traditional point identification is lost, we suggest a more generic method to point estimate MTE using the Moore-Penrose Pseudo-Invese Matrix, achieving better results than traditional methods.