891 resultados para proportional hazards
Resumo:
Background Efficient effective child product safety (PS) responses require data on hazards, injury severity and injury probability. PS responses in Australia largely rely on reports from manufacturers/retailers, other jurisdictions/regulators, or consumers. The extent to which reactive responses reflect actual child injury priorities is unknown. Aims/Objectives/Purpose This research compared PS issues for children identified using data compiled from PS regulatory data and data compiled from health data sources in Queensland, Australia. Methods PS regulatory documents describing issues affecting children in Queensland in 2008–2009 were compiled and analysed to identify frequent products and hazards. Three health data sources (ED, injury surveillance and hospital data) were analysed to identify frequent products and hazards. Results/Outcomes Projectile toys/squeeze toys were the priority products for PS regulators with these toys having the potential to release small parts presenting choking hazards. However, across all health datasets, falls were the most common mechanism of injury, and several of the products identified were not subject to a PS system response. While some incidents may not require a response, a manual review of injury description text identified child poisonings and burns as common mechanisms of injuries in the health data where there was substantial documentation of product-involvement, yet only 10% of PS system responses focused on these two mechanisms combined. Significance/contribution to the field Regulatory data focused on products that fail compliance checks with ‘potential’ to cause harm, and health data identified actual harm, resulting in different prioritisation of products/mechanisms. Work is needed to better integrate health data into PS responses in Australia.
Resumo:
Curriculum documents for mathematics emphasise the importance of promoting depth of knowledge rather than shallow coverage of the curriculum. In this paper, we report on a study that explored the analysis of junior secondary mathematics textbooks to assess their potential to assist in teaching and learning aimed at building and applying deep mathematical knowledge. The method of analysis involved the establishment of a set of specific curriculum goals and associated indicators, based on research into the teaching and learning of a particular field within the mathematics curriculum, namely proportion and proportional reasoning. Topic selection was due to its pervasive nature throughout the school mathematics curriculum at this level. As a result of this study, it was found that the five textbook series examined provided limited support for the development of multiplicative structures required for proportional reasoning, and hence would not serve well the development of deep learning of mathematics. The study demonstrated a method that could be applied to the analysis of junior secondary mathematics in many parts of the world.
Resumo:
This study used a video-based hazard perception dual task to compare the hazard perception skills of young drivers with middle aged, more experienced drivers and to determine if these skills can be improved with video-based road commentary training. The primary task required the participants to detect and verbally identify immediate hazard on video-based traffic scenarios while concurrently performing a secondary tracking task, simulating the steering of real driving. The results showed that the young drivers perceived fewer immediate hazards (mean = 75.2%, n = 24, 19 females) than the more experienced drivers (mean = 87.5%, n = 8, all females), and had longer hazard perception times, but performed better in the secondary tracking task. After the road commentary training, the mean percentage of hazards detected and identified by the young drivers improved to the level of the experienced drivers and was significantly higher than that of an age and driving experience matched control group. The results will be discussed in the context of psychological theories of hazard perception and in relation to road commentary as an evidence-based training intervention that seems to improve many aspects of unsafe driving behaviour in young drivers.
Resumo:
Young novice drivers - that is, drivers aged 16-25 years who are relatively inexperienced in driving on the road and have a novice (Learner, Provisional) driver's licence - have been overrepresented in car crash, injury and fatality statistics around the world for decades. There are numerous persistent characteristics evident in young novice driver crashes, fatalities and offences, including variables relating to the young driver themselves, broader social influences which include their passengers, the car they drive, and when and how they drive, and their risky driving behaviour in particular. Moreover, there are a range of psychosocial factors influencing the behaviour of young novice drivers, including the social influences of parents and peers, and person-related factors such as age-related factors, attitudes, and sensation seeking. Historically, a range of approaches have been developed to manage the risky driving behaviour of young novice drivers. Traditional measures predominantly relying upon education have had limited success in regulating the risky driving behaviour of the young novice driver. In contrast, interventions such as graduated driver licensing (GDL) which acknowledges young novice drivers' limitations - principally pertaining to their chronological and developmental age, and their driving inexperience - have shown to be effective in ameliorating this pervasive public health problem. In practice, GDL is a risk management tool that is designed to reduce driving at risky times (e.g., at night) or in risky driving conditions (e.g., with passengers), while still enabling novice drivers to obtain experience. In this regard, the GDL program in Queensland, Australia, was considerably enhanced in July 2007, and major additions to the program include mandated Learner practice of 100 hours recorded in a logbook, and passenger limits during night driving in the Provisional phase. Road safety researchers have also continued to consider the influential role played by the young driver's psychosocial characteristics, including psychological traits and states. In addition, whilst the majority of road safety user research is epidemiological in nature, contemporary road safety research is increasingly applying psychological and criminological theories. Importantly, such theories not only can guide young novice driver research, they can also inform the development and evaluation of countermeasures targeting their risky driving behaviour. The research is thus designed to explore the self-reported behaviours - and the personal, psychosocial, and structural influences upon the behaviours - of young novice drivers This thesis incorporates three stages of predominantly quantitative research to undertake a comprehensive investigation of the risky driving behaviour of young novices. Risky driving behaviour increases the likelihood of the young novice driver being involved in a crash which may harm themselves or other road users, and deliberate risky driving such as driving in excess of the posted speed limits is the focus of the program of research. The extant literature examining the nature of the risky behaviour of the young novice driver - and the contributing factors for this behaviour - while comprehensive, has not led to the development of a reliable instrument designed specifically to measure the risky behaviour of the young novice driver. Therefore the development and application of such a tool (the Behaviour of Young Novice Drivers Scale, or BYNDS) was foremost in the program of research. In addition to describing the driving behaviours of the young novice, a central theme of this program of research was identifying, describing, and quantifying personal, behavioural, and environmental influences upon young novice driver risky behaviour. Accordingly the 11 papers developed from the three stages of research which comprise this thesis are framed within Bandura's reciprocal determinism model which explicitly considers the reciprocal relationship between the environment, the person, and their behaviour. Stage One comprised the foundation research and operationalised quantitative and qualitative methodologies to finalise the instrument used in Stages Two and Three. The first part of Stage One involved an online survey which was completed by 761 young novice drivers who attended tertiary education institutions across Queensland. A reliable instrument for measuring the risky driving behaviour of young novices was developed (the BYNDS) and is currently being operationalised in young novice driver research in progress at the Centre for Injury Research and Prevention in Philadelphia, USA. In addition, regression analyses revealed that psychological distress influenced risky driving behaviour, and the differential influence of depression, anxiety, sensitivity to punishments and rewards, and sensation seeking propensity were explored. Path model analyses revealed that punishment sensitivity was mediated by anxiety and depression; and the influence of depression, anxiety, reward sensitivity and sensation seeking propensity were moderated by the gender of the driver. Specifically, for males, sensation seeking propensity, depression, and reward sensitivity were predictive of self-reported risky driving, whilst for females anxiety was also influential. In the second part of Stage One, 21 young novice drivers participated in individual and small group interviews. The normative influences of parents, peers, and the Police were explicated. Content analysis supported four themes of influence through punishments, rewards, and the behaviours and attitudes of parents and friends. The Police were also influential upon the risky driving behaviour of young novices. The findings of both parts of Stage One informed the research of Stage Two. Stage Two was a comprehensive investigation of the pre-Licence and Learner experiences, attitudes, and behaviours, of young novice drivers. In this stage, 1170 young novice drivers from across Queensland completed an online or paper survey exploring their experiences, behaviours and attitudes as a pre- and Learner driver. The majority of novices did not drive before they were licensed (pre-Licence driving) or as an unsupervised Learner, submitted accurate logbooks, intended to follow the road rules as a Provisional driver, and reported practicing predominantly at the end of the Learner period. The experience of Learners in the enhanced-GDL program were also examined and compared to those of Learner drivers who progressed through the former-GDL program (data collected previously by Bates, Watson, & King, 2009a). Importantly, current-GDL Learners reported significantly more driving practice and a longer Learner period, less difficulty obtaining practice, and less offence detection and crash involvement than Learners in the former-GDL program. The findings of Stage Two informed the research of Stage Three. Stage Three was a comprehensive exploration of the driving experiences, attitudes and behaviours of young novice drivers during their first six months of Provisional 1 licensure. In this stage, 390 of the 1170 young novice drivers from Stage Two completed another survey, and data collected during Stages Two and Three allowed a longitudinal investigation of self-reported risky driving behaviours, such as GDL-specific and general road rule compliance; risky behaviour such as pre-Licence driving, crash involvement and offence detection; and vehicle ownership, paying attention to Police presence, and punishment avoidance. Whilst the majority of Learner and Provisional drivers reported compliance with GDL-specific and general road rules, 33% of Learners and 50% of Provisional drivers reported speeding by 10-20 km/hr at least occasionally. Twelve percent of Learner drivers reported pre-Licence driving, and these drivers were significantly more risky as Learner and Provisional drivers. Ten percent of males and females reported being involved in a crash, and 10% of females and 18% of males had been detected for an offence, within the first six months of independent driving. Additionally, 75% of young novice drivers reported owning their own car within six months of gaining their Provisional driver's licence. Vehicle owners reported significantly shorter Learner periods and more risky driving exposure as a Provisional driver. Paying attention to Police presence on the roads appeared normative for young novice drivers: 91% of Learners and 72% of Provisional drivers reported paying attention. Provisional drivers also reported they actively avoided the Police: 25% of males and 13% of females; 23% of rural drivers and 15% of urban drivers. Stage Three also allowed the refinement of the risky behaviour measurement tool (BYNDS) created in Stage One; the original reliable 44-item instrument was refined to a similarly reliable 36-item instrument. A longitudinal exploration of the influence of anxiety, depression, sensation seeking propensity and reward sensitivity upon the risky behaviour of the Provisional driver was also undertaken using data collected in Stages Two and Three. Consistent with the research of Stage One, structural equation modeling revealed anxiety, reward sensitivity and sensation seeking propensity predicted self-reported risky driving behaviour. Again, gender was a moderator, with only reward sensitivity predicting risky driving for males. A measurement model of Akers' social learning theory (SLT) was developed containing six subscales operationalising the four constructs of differential association, imitation, personal attitudes, and differential reinforcement, and the influence of parents and peers was captured within the items in a number of these constructs. Analyses exploring the nature and extent of the psychosocial influences of personal characteristics (step 1), Akers' SLT (step 2), and elements of the prototype/willingness model (PWM) (step 3) upon self-reported speeding by the Provisional driver in a hierarchical multiple regression model found the following significant predictors: gender (male), car ownership (own car), reward sensitivity (greater sensitivity), depression (greater depression), personal attitudes (more risky attitudes), and speeding (more speeding) as a Learner. The research findings have considerable implications for road safety researchers, policy-makers, mental health professionals and medical practitioners alike. A broad range of issues need to be considered when developing, implementing and evaluating interventions for both the intentional and unintentional risky driving behaviours of interest. While a variety of interventions have been historically utilised, including education, enforcement, rehabilitation and incentives, caution is warranted. A multi-faceted approach to improving novice road safety is more likely to be effective, and new and existing countermeasures should capitalise on the potential of parents, peers and Police to be a positive influence upon the risky behaviour of young novice drivers. However, the efficacy of some interventions remains undetermined at this time. Notwithstanding this caveat, countermeasures such as augmenting and strengthening Queensland's GDL program and targeting parents and adolescents particularly warrant further attention. The findings of the research program suggest that Queensland's current-GDL can be strengthened by increasing compliance of young novice drivers with existing conditions and restrictions. The rates of speeding reported by the young Learner driver are particularly alarming for a number of reasons. The Learner is inexperienced in driving, and travelling in excess of speed limits places them at greater risk as they are also inexperienced in detecting and responding appropriately to driving hazards. In addition, the Learner period should provide the foundation for a safe lifetime driving career, enabling the development and reinforcement of non-risky driving habits. Learners who sped reported speeding by greater margins, and at greater frequencies, when they were able to drive independently. Other strategies could also be considered to enhance Queensland's GDL program, addressing both the pre-Licence adolescent and their parents. Options that warrant further investigation to determine their likely effectiveness include screening and treatment of novice drivers by mental health professionals and/or medical practitioners; and general social skills training. Considering the self-reported pre-licence driving of the young novice driver, targeted education of parents may need to occur before their child obtains a Learner licence. It is noteworthy that those participants who reported risky driving during the Learner phase also were more likely to report risky driving behaviour during the Provisional phase; therefore it appears vital that the development of safe driving habits is encouraged from the beginning of the novice period. General education of parents and young novice drivers should inform them of the considerably-increased likelihood of risky driving behaviour, crashes and offences associated with having unlimited access to a vehicle in the early stages of intermediate licensure. Importantly, parents frequently purchase the car that is used by the Provisional driver, who typically lives at home with their parents, and therefore parents are ideally positioned to monitor the journeys of their young novice driver during this early stage of independent driving. Parents are pivotal in the development of their driving child: they are models who are imitated and are sources of attitudes, expectancies, rewards and punishments; and they provide the most driving instruction for the Learner. High rates of self-reported speeding by Learners suggests that GDL programs specifically consider the nature of supervision during the Learner period, encouraging supervisors to be vigilant to compliance with general and GDL-specific road rules, and especially driving in excess of speed limit. Attitudes towards driving are formed before the adolescent reaches the age when they can be legally licensed. Young novice drivers with risky personal attitudes towards driving reported more risky driving behaviour, suggesting that countermeasures should target such attitudes and that such interventions might be implemented before the adolescent is licensed. The risky behaviours and attitudes of friends were also found to be influential, and given that young novice drivers tend to carry their friends as their passengers, a group intervention such as provided in a school class context may prove more effective. Social skills interventions that encourage the novice to resist the negative influences of their friends and their peer passengers, and to not imitate the risky driving behaviour of their friends, may also be effective. The punishments and rewards anticipated from and administered by friends were also found to influence the self-reported risky behaviour of the young novice driver; therefore young persons could be encouraged to sanction the risky, and to reward the non-risky, driving of their novice friends. Adolescent health programs and related initiatives need to more specifically consider the risks associated with driving. Young novice drivers are also adolescents, a developmental period associated with depression and anxiety. Depression, anxiety, and sensation seeking propensity were found to be predictive of risky driving; therefore interventions targeting psychological distress, whilst discouraging the expression of sensation seeking propensity whilst driving, warrant development and trialing. In addition, given that reward sensitivity was also predictive, a scheme which rewards novice drivers for safe driving behaviour - rather than rewarding the novice through emotional and instrumental rewards for risky driving behaviour - requires further investigation. The Police were also influential in the risky driving behaviour of young novices. Young novice drivers who had been detected for an offence, and then avoided punishment, reacted differentially, with some drivers appearing to become less risky after the encounter, whilst for others their risky behaviour appeared to be reinforced and therefore was more likely to be performed again. Such drivers saw t
Resumo:
Scarcity of large parcels of land in well-serviced areas has motivated people to re-develop brownfield land. Most of brownfield land has high risk of contamination from wide range of industrial activities such as gas works, factories, railway land and waste tips. In addition, people who live in brownfield re-development areas may be exposed to health hazards. This paper discusses public perceptions on the brownfield sites and also the risk and mitigation strategy to promote brownfield re-development. Data is gathered from face to face survey of fifty respondents who work in Brisbane Central Business District (CBD) and interview with an expert on remediation of contaminated land. From this preliminary study, it is found that majority of the population are not aware of any brownfield sites near their residence and those who are aware showed very little concern on their proximity to the site. Further discussion on the paper based on a simple cross tabulation analysis. The main risk mitigation strategy of re-development of brownfield site is by updating the registration through Environmental Management Register (EMR) and Contaminated Land Register (CLR). In addition, insurance may offer to cover cost overruns on remediation cost.
Resumo:
Axial acoustic wave propagation has been widely used in evaluating the mechanical properties of human bone in vivo. However, application of this technique to monitor soft tissues, such as tendon, has received comparatively little scientific attention. Laboratory-based research has established that axial acoustic wave transmission is not only related to the physical properties of equine tendon but is also proportional to tensile load to which it is exposed (Miles et al., 1996; Pourcelot et al., 2005). The reproducibility of the technique for in vivo measurements in human tendon, however, has not been established. The aim of this study was to evaluate the limits of agreement for repeated measures of the speed of sound (SoS) in human Achilles tendon in vivo. Methods: A custom built ultrasound device, consisting of an A-mode 1MHz emitter and two regularly spaced receivers, was used to measure the SoS in the mid-portion of the Achilles tendon in ten healthy males and ten females (mean age: 33.8 years, range 23-56 yrs; height: 1.73±0.08 m; weight: 68.4±15.3 kg). The emitter and receivers were held at fixed positions by a polyethylene frame and maintained in close contact with the skin overlying the tendon by means of elasticated straps. Repeated SoS measurements were taken with the subject prone (non-weightbearing and relaxed Achilles tendon) and during quiet bipedal and unipedal stance. In each instance, the device was detached and repositioned prior to measurement. Results: Limits of agreement for repeated SoS measures during non-weightbearing and bipedal and unipedal stance were ±53, ±28 and ±21 m/s, respectively. The average SoS in the non-weightbearing Achilles tendon was 1804±198 m/s. There was a significant increase in the average SoS during bilateral (2122±135 m/s) (P < 0.05) and unilateral (2221±79 m/s) stance (P < 0.05). Conclusions: Repeated SoS measures in human Achilles tendon were more reliable during stance than under non-weightbearing conditions. These findings are consistent with previous research in equine tendon in which lower variability in SoS was observed with increasing tensile load (Crevier-Denoix et al, 2009). Since the limits of agreement for Achilles tendon SoS are nearly 5% of the changes previously observed during walking and therapeutic heel raise exercises, acoustic wave transmission provides a promising new non-invasive method for determining tendon properties during sports and rehabilitation related activities.
Resumo:
This paper outlines an innovative and feasible flight control scheme for a rotary-wing unmanned aerial system (RUAS) with guaranteed safety and reliable flight quality in a gusty environment. The proposed control methodology aims to increase gust-attenuation capability of a RUAS to ensure improved flight performance when strong gusts occur. Based on the design of an effective estimator, an altitude controller is firstly constructed to synchronously compensate for fluctuations of the main rotor thrust which might lead to crashes in a gusty environment. Afterwards, a nonlinear state feedback controller is proposed to stabilize horizontal positions of the RUAS with gust-attenuation property. Performance of the proposed control framework is evaluated using parameters of a Vario XLC helicopter and high-fidelity simulations show that the proposed controllers can effectively reduce side-effect of gusts and demonstrate performance improvement when compared with the proportional-integral-derivative (PID) controllers.
Resumo:
This paper presents a nonlinear gust-attenuation controller based on constrained neural-network (NN) theory. The controller aims to achieve sufficient stability and handling quality for a fixed-wing unmanned aerial system (UAS) in a gusty environment when control inputs are subjected to constraints. Constraints in inputs emulate situations where aircraft actuators fail requiring the aircraft to be operated with fail-safe capability. The proposed controller enables gust-attenuation property and stabilizes the aircraft dynamics in a gusty environment. The proposed flight controller is obtained by solving the Hamilton-Jacobi-Isaacs (HJI) equations based on an policy iteration (PI) approach. Performance of the controller is evaluated using a high-fidelity six degree-of-freedom Shadow UAS model. Simulations show that our controller demonstrates great performance improvement in a gusty environment, especially in angle-of-attack (AOA), pitch and pitch rate. Comparative studies are conducted with the proportional-integral-derivative (PID) controllers, justifying the efficiency of our controller and verifying its suitability for integration into the design of flight control systems for forced landing of UASs.
Resumo:
The reliability analysis is crucial to reducing unexpected down time, severe failures and ever tightened maintenance budget of engineering assets. Hazard based reliability methods are of particular interest as hazard reflects the current health status of engineering assets and their imminent failure risks. Most existing hazard models were constructed using the statistical methods. However, these methods were established largely based on two assumptions: one is the assumption of baseline failure distributions being accurate to the population concerned and the other is the assumption of effects of covariates on hazards. These two assumptions may be difficult to achieve and therefore compromise the effectiveness of hazard models in the application. To address this issue, a non-linear hazard modelling approach is developed in this research using neural networks (NNs), resulting in neural network hazard models (NNHMs), to deal with limitations due to the two assumptions for statistical models. With the success of failure prevention effort, less failure history becomes available for reliability analysis. Involving condition data or covariates is a natural solution to this challenge. A critical issue for involving covariates in reliability analysis is that complete and consistent covariate data are often unavailable in reality due to inconsistent measuring frequencies of multiple covariates, sensor failure, and sparse intrusive measurements. This problem has not been studied adequately in current reliability applications. This research thus investigates such incomplete covariates problem in reliability analysis. Typical approaches to handling incomplete covariates have been studied to investigate their performance and effects on the reliability analysis results. Since these existing approaches could underestimate the variance in regressions and introduce extra uncertainties to reliability analysis, the developed NNHMs are extended to include handling incomplete covariates as an integral part. The extended versions of NNHMs have been validated using simulated bearing data and real data from a liquefied natural gas pump. The results demonstrate the new approach outperforms the typical incomplete covariates handling approaches. Another problem in reliability analysis is that future covariates of engineering assets are generally unavailable. In existing practices for multi-step reliability analysis, historical covariates were used to estimate the future covariates. Covariates of engineering assets, however, are often subject to substantial fluctuation due to the influence of both engineering degradation and changes in environmental settings. The commonly used covariate extrapolation methods thus would not be suitable because of the error accumulation and uncertainty propagation. To overcome this difficulty, instead of directly extrapolating covariate values, projection of covariate states is conducted in this research. The estimated covariate states and unknown covariate values in future running steps of assets constitute an incomplete covariate set which is then analysed by the extended NNHMs. A new assessment function is also proposed to evaluate risks of underestimated and overestimated reliability analysis results. A case study using field data from a paper and pulp mill has been conducted and it demonstrates that this new multi-step reliability analysis procedure is able to generate more accurate analysis results.
Resumo:
Vehicular accidents are one of the deadliest safety hazards and accordingly an immense concern of individuals and governments. Although, a wide range of active autonomous safety systems, such as advanced driving assistance and lane keeping support, are introduced to facilitate safer driving experience, these stand-alone systems have limited capabilities in providing safety. Therefore, cooperative vehicular systems were proposed to fulfill more safety requirements. Most cooperative vehicle-to-vehicle safety applications require relative positioning accuracy of decimeter level with an update rate of at least 10 Hz. These requirements cannot be met via direct navigation or differential positioning techniques. This paper studies a cooperative vehicle platform that aims to facilitate real-time relative positioning (RRP) among adjacent vehicles. The developed system is capable of exchanging both GPS position solutions and raw observations using RTCM-104 format over vehicular dedicated short range communication (DSRC) links. Real-time kinematic (RTK) positioning technique is integrated into the system to enable RRP to be served as an embedded real-time warning system. The 5.9 GHz DSRC technology is adopted as the communication channel among road-side units (RSUs) and on-board units (OBUs) to distribute GPS corrections data received from a nearby reference station via the Internet using cellular technologies, by means of RSUs, as well as to exchange the vehicular real-time GPS raw observation data. Ultimately, each receiving vehicle calculates relative positions of its neighbors to attain a RRP map. A series of real-world data collection experiments was conducted to explore the synergies of both DSRC and positioning systems. The results demonstrate a significant enhancement in precision and availability of relative positioning at mobile vehicles.
Resumo:
The process of building safer roads and roadsides needs to be managed to minimise risks to both the road using public and roadworkers. However, detailed and accurate data on fatalities and injuries at roadworks across Australia are not available. The lack of reliable safety records and consequent poor understanding of the hazards at roadworks motivated this research to examine the common trends in incidents and to understand workers' perceptions of the causes of incidents at roadworks. To achieve these aims, 66 roadworks personnel were interviewed in Queensland including road construction workers, traffic controllers, engineers, and managers. Qualitative analyses identified several major issues and themes. Vehicles driving into work areas, traffic controllers hit by vehicles, rear end crashes at roadwork approaches, and reversing incidents involving work vehicles and machinery were the most common types of incidents. Roadworkers perceived driver errors, such as violation of speed limits, distracted driving, and ignoring signage and traffic controllers' instructions as the main causes of the incidents.
Resumo:
BACKGROUND: Genetic susceptibility to multiple sclerosis (MS) has been recognised for many years. Considerable data exist from the northern hemisphere regarding the familial recurrence risks for MS, but there are few data for the southern hemisphere and regions at lower latitude such as Australia. To investigate the interaction between environmental and genetic causative factors in MS, the authors undertook a familial recurrence risk study in three latitudinally distinct regions of Australia. METHODS: Immediate and extended family pedigrees have been collected for three cohorts of people with MS in Queensland, Victoria and Tasmania spanning 15° of latitude. Age of onset data from Queensland were utilised to estimate age-adjusted recurrence rates. RESULTS: Recurrence risks in Australia were significantly lower than in studies from northern hemisphere populations. The age-adjusted risk for siblings across Australia was 2.13% compared with 3.5% for the northern hemisphere. A similar pattern was seen for other relatives. The risks to relatives were proportional to the population risks for each site, and hence the sibling recurrence-risk ratio (λ(s)) was similar across all sites. DISCUSSION: The familial recurrence risk of MS in Australia is lower than in previously reported studies. This is directly related to the lower population prevalence of MS. The overall genetic susceptibility in Australia as measured by the λ(s) is similar to the northern hemisphere, suggesting that the difference in population risk is explained largely by environmental factors rather than by genetic admixture.
Resumo:
Generally, the magnitude of pollutant emissions from diesel engines running on biodiesel fuel is ultimately coupled to the structure of respective molecules that constitutes the fuel. Previous studies demonstrated the relationship between organic fraction of PM and its oxidative potential. Herein, emissions from a diesel engine running on different biofuels were analysed in more detail to explore the role different organic fractions play in the measured oxidative potential. In this work, a more detailed chemical analysis of biofuel PM was undertaken using a compact Time of Flight Aerosol Mass Spectrometer (c-ToF AMS). This enabled a better identification of the different organic fractions that contribute to the overall measured oxidative potentials. The concentration of reactive oxygen species (ROS) was measured using a profluorescent nitroxide molecular probe 9-(1,1,3,3-tetramethylisoindolin-2-yloxyl-5-ethynyl)-10-(phenylethynyl)anthracene (BPEAnit). Therefore the oxidative potential of the PM, measured through the ROS content, although proportional to the total organic content in certain cases shows a much higher correlation with the oxygenated organic fraction as measured by the c-ToF AMS. This highlights the importance of knowing the surface chemistry of particles for assessing their health impacts. It also sheds light onto new aspects of particulate emissions that should be taken into account when establishing relevant metrics for assessing health implications of replacing diesel with alternative fuels.
Resumo:
A significant amount of speech data is required to develop a robust speaker verification system, but it is difficult to find enough development speech to match all expected conditions. In this paper we introduce a new approach to Gaussian probabilistic linear discriminant analysis (GPLDA) to estimate reliable model parameters as a linearly weighted model taking more input from the large volume of available telephone data and smaller proportional input from limited microphone data. In comparison to a traditional pooled training approach, where the GPLDA model is trained over both telephone and microphone speech, this linear-weighted GPLDA approach is shown to provide better EER and DCF performance in microphone and mixed conditions in both the NIST 2008 and NIST 2010 evaluation corpora. Based upon these results, we believe that linear-weighted GPLDA will provide a better approach than pooled GPLDA, allowing for the further improvement of GPLDA speaker verification in conditions with limited development data.
Resumo:
Background The implementation of the Australian Consumer Law in 2011 highlighted the need for better use of injury data to improve the effectiveness and responsiveness of product safety (PS) initiatives. In the PS system, resources are allocated to different priority issues using risk assessment tools. The rapid exchange of information (RAPEX) tool to prioritise hazards, developed by the European Commission, is currently being adopted in Australia. Injury data is required as a basic input to the RAPEX tool in the risk assessment process. One of the challenges in utilising injury data in the PS system is the complexity of translating detailed clinical coded data into broad categories such as those used in the RAPEX tool. Aims This study aims to translate hospital burns data into a simplified format by mapping the International Statistical Classification of Disease and Related Health Problems (Tenth Revision) Australian Modification (ICD-10-AM) burn codes into RAPEX severity rankings, using these rankings to identify priority areas in childhood product-related burns data. Methods ICD-10-AM burn codes were mapped into four levels of severity using the RAPEX guide table by assigning rankings from 1-4, in order of increasing severity. RAPEX rankings were determined by the thickness and surface area of the burn (BSA) with information extracted from the fourth character of T20-T30 codes for burn thickness, and the fourth and fifth characters of T31 codes for the BSA. Following the mapping process, secondary data analysis of 2008-2010 Queensland Hospital Admitted Patient Data Collection (QHAPDC) paediatric data was conducted to identify priority areas in product-related burns. Results The application of RAPEX rankings in QHAPDC burn data showed approximately 70% of paediatric burns in Queensland hospitals were categorised under RAPEX levels 1 and 2, 25% under RAPEX 3 and 4, with the remaining 5% unclassifiable. In the PS system, prioritisations are made to issues categorised under RAPEX levels 3 and 4. Analysis of external cause codes within these levels showed that flammable materials (for children aged 10-15yo) and hot substances (for children aged <2yo) were the most frequently identified products. Discussion and conclusions The mapping of ICD-10-AM burn codes into RAPEX rankings showed a favourable degree of compatibility between both classification systems, suggesting that ICD-10-AM coded burn data can be simplified to more effectively support PS initiatives. Additionally, the secondary data analysis showed that only 25% of all admitted burn cases in Queensland were severe enough to trigger a PS response.