901 resultados para probabilistic roadmap


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wi-Fi is a commonly available source of localization information in urban environments but is challenging to integrate into conventional mapping architectures. Current state of the art probabilistic Wi-Fi SLAM algorithms are limited by spatial resolution and an inability to remove the accumulation of rotational error, inherent limitations of the Wi-Fi architecture. In this paper we leverage the low quality sensory requirements and coarse metric properties of RatSLAM to localize using Wi-Fi fingerprints. To further improve performance, we present a novel sensor fusion technique that integrates camera and Wi-Fi to improve localization specificity, and use compass sensor data to remove orientation drift. We evaluate the algorithms in diverse real world indoor and outdoor environments, including an office floor, university campus and a visually aliased circular building loop. The algorithms produce topologically correct maps that are superior to those produced using only a single sensor modality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Demand response can be used for providing regulation services in the electricity markets. The retailers can bid in a day-ahead market and respond to real-time regulation signal by load control. This paper proposes a new stochastic ranking method to provide regulation services via demand response. A pool of thermostatically controllable appliances (TCAs) such as air conditioners and water heaters are adjusted using direct load control method. The selection of appliances is based on a probabilistic ranking technique utilizing attributes such as temperature variation and statuses of TCAs. These attributes are stochastically forecasted for the next time step using day-ahead information. System performance is analyzed with a sample regulation signal. Network capability to provide regulation services under various seasons is analyzed. The effect of network size on the regulation services is also investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Description of a patient's injuries is recorded in narrative text form by hospital emergency departments. For statistical reporting, this text data needs to be mapped to pre-defined codes. Existing research in this field uses the Naïve Bayes probabilistic method to build classifiers for mapping. In this paper, we focus on providing guidance on the selection of a classification method. We build a number of classifiers belonging to different classification families such as decision tree, probabilistic, neural networks, and instance-based, ensemble-based and kernel-based linear classifiers. An extensive pre-processing is carried out to ensure the quality of data and, in hence, the quality classification outcome. The records with a null entry in injury description are removed. The misspelling correction process is carried out by finding and replacing the misspelt word with a soundlike word. Meaningful phrases have been identified and kept, instead of removing the part of phrase as a stop word. The abbreviations appearing in many forms of entry are manually identified and only one form of abbreviations is used. Clustering is utilised to discriminate between non-frequent and frequent terms. This process reduced the number of text features dramatically from about 28,000 to 5000. The medical narrative text injury dataset, under consideration, is composed of many short documents. The data can be characterized as high-dimensional and sparse, i.e., few features are irrelevant but features are correlated with one another. Therefore, Matrix factorization techniques such as Singular Value Decomposition (SVD) and Non Negative Matrix Factorization (NNMF) have been used to map the processed feature space to a lower-dimensional feature space. Classifiers with these reduced feature space have been built. In experiments, a set of tests are conducted to reflect which classification method is best for the medical text classification. The Non Negative Matrix Factorization with Support Vector Machine method can achieve 93% precision which is higher than all the tested traditional classifiers. We also found that TF/IDF weighting which works well for long text classification is inferior to binary weighting in short document classification. Another finding is that the Top-n terms should be removed in consultation with medical experts, as it affects the classification performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bayesian networks (BNs) are graphical probabilistic models used for reasoning under uncertainty. These models are becoming increasing popular in a range of fields including ecology, computational biology, medical diagnosis, and forensics. In most of these cases, the BNs are quantified using information from experts, or from user opinions. An interest therefore lies in the way in which multiple opinions can be represented and used in a BN. This paper proposes the use of a measurement error model to combine opinions for use in the quantification of a BN. The multiple opinions are treated as a realisation of measurement error and the model uses the posterior probabilities ascribed to each node in the BN which are computed from the prior information given by each expert. The proposed model addresses the issues associated with current methods of combining opinions such as the absence of a coherent probability model, the lack of the conditional independence structure of the BN being maintained, and the provision of only a point estimate for the consensus. The proposed model is applied an existing Bayesian Network and performed well when compared to existing methods of combining opinions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis addresses voltage violation problem, the most critical issue associated with high level penetration of photovoltaic (PV) in electricity distribution network. A coordinated control algorithm using the reactive power from PV inverter and integrated battery energy storage has been developed and investigated in different network scenarios in the thesis. Probable variations associated with solar generation, end-user participation and network parameters are also considered. Furthermore, a unified data model and well-defined communication protocol to ensure the smooth coordination between all the components during the operation of the algorithm is described. Finally this thesis incorporated the uncertainties of solar generation using probabilistic load flow analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents a new vision-based decision and control strategy for automated aircraft collision avoidance that can be realistically applied to the See and Avoid problem. The effectiveness of the control strategy positions the research as a major contribution toward realising the simultaneous operation of manned and unmanned aircraft within civilian airspace. Key developments include novel classical and visual predictive control frameworks, and a performance evaluation technique aligned with existing aviation practise and applicable to autonomous systems. The overall approach is demonstrated through experimental results on a small multirotor unmanned aircraft, and through high fidelity probabilistic simulation studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural disasters cause widespread disruption, costing the Australian economy $6.3 billion per year, and those costs are projected to rise incrementally to $23 billion by 2050. With more frequent natural disasters with greater consequences, Australian communities need the ability to prepare and plan for them, absorb and recover from them, and adapt more successfully to their effects. Enhancing Australian resilience will allow us to better anticipate disasters and assist in planning to reduce losses, rather than just waiting for the next king hit and paying for it afterwards. Given the scale of devastation, governments have been quick to pick up the pieces when major natural disasters hit. But this approach (‘The government will give you taxpayers’ money regardless of what you did to help yourself, and we’ll help you rebuild in the same risky area.’) has created a culture of dependence. This is unsustainable and costly. In 2008, ASPI published Taking a punch: building a more resilient Australia. That report emphasised the importance of strong leadership and coordination in disaster resilience policymaking, as well as the value of volunteers and family and individual preparation, in managing the effects of major disasters. This report offers a roadmap for enhancing Australia’s disaster resilience, building on the 2011 National Strategy for Disaster Resilience. It includes a snapshot of relevant issues and current resilience efforts in Australia, outlining key challenges and opportunities. The report sets out 11 recommendations to help guide Australia towards increasing national resilience, from individuals and local communities through to state and federal agencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental studies have found that when the state-of-the-art probabilistic linear discriminant analysis (PLDA) speaker verification systems are trained using out-domain data, it significantly affects speaker verification performance due to the mismatch between development data and evaluation data. To overcome this problem we propose a novel unsupervised inter dataset variability (IDV) compensation approach to compensate the dataset mismatch. IDV-compensated PLDA system achieves over 10% relative improvement in EER values over out-domain PLDA system by effectively compensating the mismatch between in-domain and out-domain data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last two decades, housing affordability has been a problem for young people, and identified as factor leading to youth homelessness. The National Youth Commission Inquiry into Youth Homelessness developed a roadmap for preventing this problem (National Youth Commission, 2008). The roadmap recommends increasing the supply of affordable housing for young people as an important strategy to reduce the risk of homelessness problems. In addition, understanding the barriers and the needs of young people is a significant part of the development of a national affordable housing strategy. This paper explores issues encountered by young people when they enter the housing market as first home buyers. A short survey was conducted to review the barriers to entry, classified by income levels, housing cost and availability of affordable housing. In the current competitive job market, young people have minimal work experience, relatively low job security and low income. In addition to these barriers, participants also suggested other barriers towards the purchase of their first home, such as lack of knowledge of legal issues and lack of government funding. This study suggests the need for both government and educational support for young people around housing choices and the development of financial strategies to manage barriers towards owning their first home.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This book represents a landmark effort to probe and analyze the theory and empirics of designing water disaster management policies. It consists of seven chapters that examine, in-depth and comprehensively, issues that are central to crafting effective policies for water disaster management. The authors use historical surveys, institutional analysis, econometric investigations, empirical case studies, and conceptual-theoretical discussions to clarify and illuminate the complex policy process. The specific topics studied in this book include a review and analysis of key policy areas and research priority areas associated with water disaster management, community participation in disaster risk reduction, the economics and politics of ‘green’ flood control, probabilistic flood forecasting for flood risk management, polycentric governance and flood risk management, drought management with the aid of dynamic inter-generational preferences, and how social resilience can inform SA/SIA for adaptive planning for climate change in vulnerable areas. A unique feature of this book is its analysis of the causes and consequences of water disasters and efforts to address them successfully through policy-rich, cross-disciplinary and transnational papers. This book is designed to help enrich the sparse discourse on water disaster management policies and galvanize water professionals to craft creative solutions to tackle water disasters efficiently, equitably, and sustainably. This book should also be of considerable use to disaster management professionals, in general, and natural resource policy analysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper analyzes the limitations upon the amount of in- domain (NIST SREs) data required for training a probabilistic linear discriminant analysis (PLDA) speaker verification system based on out-domain (Switchboard) total variability subspaces. By limiting the number of speakers, the number of sessions per speaker and the length of active speech per session available in the target domain for PLDA training, we investigated the relative effect of these three parameters on PLDA speaker verification performance in the NIST 2008 and NIST 2010 speaker recognition evaluation datasets. Experimental results indicate that while these parameters depend highly on each other, to beat out-domain PLDA training, more than 10 seconds of active speech should be available for at least 4 sessions/speaker for a minimum of 800 speakers. If further data is available, considerable improvement can be made over solely out-domain PLDA training.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes the addition of a weighted median Fisher discriminator (WMFD) projection prior to length-normalised Gaussian probabilistic linear discriminant analysis (GPLDA) modelling in order to compensate the additional session variation. In limited microphone data conditions, a linear-weighted approach is introduced to increase the influence of microphone speech dataset. The linear-weighted WMFD-projected GPLDA system shows improvements in EER and DCF values over the pooled LDA- and WMFD-projected GPLDA systems in inter-view-interview condition as WMFD projection extracts more speaker discriminant information with limited number of sessions/ speaker data, and linear-weighted GPLDA approach estimates reliable model parameters with limited microphone data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

What type of probability theory best describes the way humans make judgments under uncertainty and decisions under conflict? Although rational models of cognition have become prominent and have achieved much success, they adhere to the laws of classical probability theory despite the fact that human reasoning does not always conform to these laws. For this reason we have seen the recent emergence of models based on an alternative probabilistic framework drawn from quantum theory. These quantum models show promise in addressing cognitive phenomena that have proven recalcitrant to modeling by means of classical probability theory. This review compares and contrasts probabilistic models based on Bayesian or classical versus quantum principles, and highlights the advantages and disadvantages of each approach.