952 resultados para polysaccharide-protein complex
Resumo:
Purpose: Anti-oxidation and exocytosis are important for maintaining exocrine tissue homeostasis. During aging, functional and structural alterations occur in the lacrimal gland (LG), including oxidative damage to proteins, lipids, and DNA. The aims of the present study were to determine in the aging LG: a) the effects of aging on LG structure and secretory activity and b) changes in the expression of oxidative stress markers. Methods: To address these goals, tear secretion composition and corneal impression cytology were compared between male Wistar rats of 2 (control) and 24 (aged) months. LG morphology and the expression levels of vitamin E and malonaldehyde (MDA) were evaluated to determine the anti-oxidant activity and lipid peroxidation, respectively. RT-PCR and western blot analysis were used for the analysis of Ras related in brain GTPase protein (Rab) and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins of the secretory machinery (i.e.; Rab 3d, Rab 27, vesicle-associated membrane protein-2 (Vamp-2), and syntaxin). Results: Histological analysis of aged rats revealed a higher frequency of corneal epithelia metaplasia. In the acinar cells, organelles underwent degeneration, and lipofucsin-like material accumulated in the cytoplasm along with declines in the anti-oxidant marker vitamin E. Rab3d and Rab27b mRNA levels fell along with Rab3d protein expression, whereas syntaxin levels increased. Conclusions: These findings indicate that exocytotic and anti-oxidant mechanisms become impaired with age in the rat LG. In parallel with these structural alterations, functional declines may contribute to the pathophysiology caused by tear film modification in dry eye disease.
Resumo:
Congenital heart disease (CHD) occurs in similar to 1% of newborns. CHD arises from many distinct etiologies, ranging from genetic or genomic variation to exposure to teratogens, which elicit diverse cell and molecular responses during cardiac development. To systematically explore the relationships between CHD risk factors and responses, we compiled and integrated comprehensive datasets from studies of CHD in humans and model organisms. We examined two alternative models of potential functional relationships between genes in these datasets: direct convergence, in which CHD risk factors significantly and directly impact the same genes and molecules and functional convergence, in which risk factors significantly impact different molecules that participate in a discrete heart development network. We observed no evidence for direct convergence. In contrast, we show that CHD risk factors functionally converge in protein networks driving the development of specific anatomical structures (e.g., outflow tract, ventricular septum, and atrial septum) that are malformed by CHD. This integrative analysis of CHD risk factors and responses suggests a complex pattern of functional interactions between genomic variation and environmental exposures that modulate critical biological systems during heart development.
Resumo:
RpfG is a member of a class of wide spread bacterial two-component regulators with an HD-GYP cyclic di-GMP phosphodiesterase domain. In the plant pathogen Xanthomonas campestris, RpfG together with the sensor kinase RpfC regulates multiple factors as a response to the cell-to-cell Diffusible Signalling Factor (DSF). A dynamic physical interaction of RpfG with two diguanylate cyclase (GGDEF) domain proteins controls motility. Here we show that, contrary to expectation, regulation of motility by the GGDEF domain proteins does not depend upon their cyclic di-GMP synthetic activity. Furthermore we show that the complex of RpfG and GGDEF domain proteins recruits a specific PilZ domain adaptor protein, and this complex then interacts with the pilus motor proteins PilU and PiIT. The results support a model in which DSF signalling influences motility through the highly regulated dynamic interaction of proteins that affect pilus action. A specific motif that we identify to be required for HD-GYP domain interaction is conserved in a number of GGDEF domain proteins, suggesting that regulation via interdomain interactions is of broad relevance.
Resumo:
Purpose: To discharge a patient from the intensive care unit (ICU) is a complex decision-making process because in-hospital mortality after critical illness may be as high as up to 27%. Static C-reactive protein (CRP) values have been previously evaluated as a predictor of post-ICU mortality with conflicting results. Therefore, we evaluated the CRP ratio in the last 24 hours before ICU discharge as a predictor of in-hospital outcomes. Methods: A retrospective cohort study was performed in 409 patients from a 6-bed ICU of a university hospital. Data were prospectively collected during a 4-year period. Only patients discharged alive from the ICU with at least 72 hours of ICU length of stay were evaluated. Results: In-hospital mortality was 18.3% (75/409). Patients with reduction less than 25% in CRP concentrations at 24 hours as compared with 48 hours before ICU discharge had a worse prognosis, with increased mortality (23% vs 11%, P = .002) and post-ICU length of stay (26 [7-43] vs 11 [5-27] days, P = .036). Moreover, among hospital survivors (n = 334), patients with CRP reduction less than 25% were discharged later (hazard ratio, 0.750; 95% confidence interval, 0.602-0.935; P = .011). Conclusions: In this large cohort of critically ill patients, failure to reduce CRP values more than 25% in the last 24 hours of ICU stay is a strong predictor of worse in-hospital outcomes. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Nitrosyl ruthenium complexes are promising NO donor agents with numerous advantages for the biologic applications of NO. We have characterized the NO release from the nitrosyl ruthenium complex [Ru(NO2)(bpy)(2)(4-pic)](+) (I) and the reactive oxygen/nitrogen species (ROS/RNS)-mediated NO actions on isolated rat liver mitochondria. The results indicated that oxidation of mitochondrial NADH promotes NO release from (I) in a manner mediated by NO2 formation (at neutral pH) as in mammalian cells, followed by an oxygen atom transfer mechanism (OAT). The NO released from (I) uncoupled mitochondria at low concentrations/incubation times and inhibited the respiratory chain at high concentrations/incubation times. In the presence of ROS generated by mitochondria NO gave rise to peroxynitrite, which, in turn, inhibited the respiratory chain and oxidized membrane protein-thiols to elicit a Ca2+-independent mitochondrial permeability transition; this process was only partially inhibited by cyclosporine-A, almost fully inhibited by the thiol reagent N-ethylmaleimide (NEM) and fully inhibited by the NO scavenger 2-(4-carboxyphenyl)-4,45,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). These actions correlated with the release of cytochrome c from isolated mitochondria as detected by Western blotting analysis. These events, typically involved in cell necrosis and/or apoptosis denote a potential specific action of (I) and analogs against tumor cells via mitochondria-mediated processes. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Objective: Previously, we identified that the ATC/TTC haplotype formed by polymorphisms in the Interleukin-(IL)8 gene conferred susceptibility to chronic periodontitis (CP). The aim of the study was to investigate whether the IL8 haplotype ATC/TTC was associated with the volume of gingival crevicular fluid (GCF), the concentration of interleukin IL-8 in the GCF, as well as periodontal conditions in patients with CP in comparison to controls without CP. Methods: Seventy-nine individuals (CP: n = 41, controls: n = 38) were grouped according to the presence (susceptible for CP) or absence (not susceptible for CP) of the IL8 ATC/TTC haplotype. After periodontal clinical evaluation, they were subdivided by the presence or absence of CP. GCF was collected from each patient and the IL-8 levels were determined by ELISA. The GCF volume of each subject was measured by means of a calibrated electronic device. Comparisons of means between carriers and non-carriers of the ATC/TTC haplotype were evaluated using the Mann-Whitney test. Linear regression and stepwise linear regression analysis were used to analyse the association of the GCF volume with potential covariates and their contribution for the phenotype. Results: We did not find significant differences of both periodontal conditions and IL-8 concentration in the GCF of patients with the presence or absence of the IL8 ATC/TTC haplotype. However, the GCF volume was significantly higher amongst the patients affected by CP that are absent for the IL8 ATC/TTC haplotype. In addition, linear regression analysis showed a statistically significant association between GCF volume and CP, IL8 haplotype ATC/TTC and IL-8 concentration. Conclusions: The IL8 haplotype of susceptibility to CP was neither associated with IL-8 cytokine levels nor with clinical periodontal parameters. Also, CP, IL8 haplotype and IL-8 concentration showed a positive association with the GCF volume levels in the studied patients. (c) 2012 Published by Elsevier Ltd.
Resumo:
The low efficiency of gene transfer is a recurrent problem in DNA vaccine development and gene therapy studies using non-viral vectors such as plasmid DNA (pDNA). This is mainly due to the fact that during their traffic to the target cell's nuclei, plasmid vectors must overcome a series of physical, enzymatic and diffusional barriers. The main objective of this work is the development of recombinant proteins specifically designed for pDNA delivery, which take advantage of molecular motors like dynein, for the transport of cargos from the periphery to the centrosome of mammalian cells. A DNA binding sequence was fused to the N-terminus of the recombinant human dynein light chain LC8. Expression studies indicated that the fusion protein was correctly expressed in soluble form using E. coli BL21(DE3) strain. As expected, gel permeation assays found the purified protein mainly present as dimers, the functional oligomeric state of LC8. Gel retardation assays and atomic force microscopy proved the ability of the fusion protein to interact and condense pDNA. Zeta potential measurements indicated that LC8 with DNA binding domain (LD4) has an enhanced capacity to interact and condense pDNA, generating positively charged complexes. Transfection of cultured HeLa cells confirmed the ability of the LD4 to facilitate pDNA uptake and indicate the involvement of the retrograde transport in the intracellular trafficking of pDNA: LD4 complexes. Finally, cytotoxicity studies demonstrated a very low toxicity of the fusion protein vector, indicating the potential for in vivo applications. The study presented here is part of an effort to develop new modular shuttle proteins able to take advantage of strategies used by viruses to infect mammalian cells, aiming to provide new tools for gene therapy and DNA vaccination studies. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Here, we describe a female patient with autism spectrum disorder and dysmorphic features that harbors a complex genetic alteration, involving a de novo balanced translocation t(2;X)(q11;q24), a 5q11 segmental trisomy and a maternally inherited isodisomy on chromosome 5. All the possibly damaging genetic effects of such alterations are discussed. In light of recent findings on ASD genetic causes, the hypothesis that all these alterations might be acting in orchestration and contributing to the phenotype is also considered. (C) 2012 Wiley Periodicals, Inc.
Resumo:
Red cell haemoglobin is the fundamental oxygen-transporting molecule in blood, but also a potentially tissue-damaging compound owing to its highly reactive haem groups. During intravascular haemolysis, such as in malaria and haemoglobinopathies(1), haemoglobin is released into the plasma, where it is captured by the protective acute-phase protein haptoglobin. This leads to formation of the haptoglobin-haemoglobin complex, which represents a virtually irreversible non-covalent protein-protein interaction(2). Here we present the crystal structure of the dimeric porcine haptoglobin-haemoglobin complex determined at 2.9 angstrom resolution. This structure reveals that haptoglobin molecules dimerize through an unexpected beta-strand swap between two complement control protein (CCP) domains, defining a new fusion CCP domain structure. The haptoglobin serine protease domain forms extensive interactions with both the alpha- and beta-subunits of haemoglobin, explaining the tight binding between haptoglobin and haemoglobin. The haemoglobin-interacting region in the alpha beta dimer is highly overlapping with the interface between the two alpha beta dimers that constitute the native haemoglobin tetramer. Several haemoglobin residues prone to oxidative modification after exposure to haem-induced reactive oxygen species are buried in the haptoglobin-haemoglobin interface, thus showing a direct protective role of haptoglobin. The haptoglobin loop previously shown to be essential for binding of haptoglobin-haemoglobin to the macrophage scavenger receptor CD163 (ref. 3) protrudes from the surface of the distal end of the complex, adjacent to the associated haemoglobin alpha-subunit. Small-angle X-ray scattering measurements of human haptoglobin-haemoglobin bound to the ligand-binding fragment of CD163 confirm receptor binding in this area, and show that the rigid dimeric complex can bind two receptors. Such receptor cross-linkage may facilitate scavenging and explain the increased functional affinity of multimeric haptoglobin-haemoglobin for CD163 (ref. 4).
Resumo:
Abstract Background Collybistin (CB), a neuron-specific guanine nucleotide exchange factor, has been implicated in targeting gephyrin-GABAA receptors clusters to inhibitory postsynaptic sites. However, little is known about additional CB partners and functions. Findings Here, we identified the p40 subunit of the eukaryotic translation initiation factor 3 (eIF3H) as a novel binding partner of CB, documenting the interaction in yeast, non-neuronal cell lines, and the brain. In addition, we demonstrated that gephyrin also interacts with eIF3H in non-neuronal cells and forms a complex with eIF3 in the brain. Conclusions Together, our results suggest, for the first time, that CB and gephyrin associate with the translation initiation machinery, and lend further support to the previous evidence that gephyrin may act as a regulator of synaptic protein synthesis.
Resumo:
The present study reports the spectroscopic characterization by UV-visible absorption spectroscopy, magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) of the recombinant orf10-encoded P450-camphor like protein (P450CLA)of Streptomyces clavuligerus expressed in Escherichia coli Rosetta in the native form and associated to external ligands containing the β-lactam, oxazole and alkylamine-derived (alcohol) moieties of the clavulamic acid. Considering the diversity of potential applications for the enzyme, the reactivity with tert-butylhydroperoxide (tert-BuOOH) was also characterized. P450CLA presents a covalently bound heme group and exhibited the UV-visible, CD and MCD spectral features of P450CAM including the fingerprint Soret band at 450 nm generated by the ferrous CO-complex. P450CLA was converted to high valence species by tert-BuOOH and promoted homolytic scission of the O-O bond. The radical profile of the reaction was tert-butyloxyl as primary and methyl and butylperoxyl as secondary radicals. The secondary methyl and butylperoxyl radicals resulted respectively from the β-scission of the alkoxyl radical and from the reaction of methyl radical with molecular oxygen.
Resumo:
Previous analyses of the mitochondrial gene cytochrome c oxidase subunit 1 (COI) and γ-proteobacterial endosymbiont diversity have suggested that the marine bryozoan Bugula neritina is a complex of three cryptic species, namely Types S, D and N. Types D and N were previously reported to have restricted distributions along California (western USA) and Delaware and Connecticut (eastern USA), respectively, whereas Type S is considered widespread in tropical, subtropical and temperate regions due to anthropogenic transport. Here, Bayesian species delimitation analysis of a data set composed of two mitochondrial (COI and large ribosomal RNA subunit [16S]) and two nuclear genes (dynein light chain roadblock type-2 protein [DYN] and voltage-dependent anion-selective channel protein [VDAC]) demonstrated that Types S, D and N correspond to three biological species. This finding was significantly supported, in spite of the combinations of priors applied for ancestral population size and root age. Furthermore, COI sequences were used to assess the introduction patterns of the cosmopolitan Type S species. Two COI haplotypes of Type S (S1a and S1d) were found occurring at a global scale. Mantel tests showed correlation between these haplotypes and local sea surface temperature tolerance. Accordingly, the distributions of Type S haplotypes may reflect intraspecific temperature tolerance variation, in addition to the role of introduction vectors. Finally, we show that the Type N may also have been introduced widely, as this species was found for the first time in Central California and north-eastern Australia.
Resumo:
BACKGROUND: Generation of active procoagulant cofactor factor Va (FVa) and its subsequent association with the enzyme activated factor X (FXa) to form the prothrombinase complex is a pivotal initial event in blood coagulation and has been the subject of investigative effort, speculation, and controversy. The current paradigm assumes that FV activation is initiated by limited proteolysis by traces of (meizo) thrombin. METHODS AND RESULTS: Recombinant tick salivary protein TIX-5 was produced and anticoagulant properties were studied with the use of plasma, whole blood, and purified systems. Here, we report that TIX-5 specifically inhibits FXa-mediated FV activation involving the B domain of FV and show that FXa activation of FV is pivotal for plasma and blood clotting. Accordingly, tick feeding is impaired on TIX-5 immune rabbits, displaying the in vivo importance of TIX-5. CONCLUSIONS: Our data elucidate a unique molecular mechanism by which ticks inhibit the host's coagulation system. From our data, we propose a revised blood coagulation scheme in which direct FXa-mediated FV activation occurs in the initiation phase during which thrombin-mediated FV activation is restrained by fibrinogen and inhibitors.
Resumo:
Background: It is believed that schistosomes evade complement-mediated killing by expressing regulatory proteins on their surface. Recently, six homologues of human CD59, an important inhibitor of the complement system membrane attack complex, were identified in the schistosome genome. Therefore, it is important to investigate whether these molecules could act as CD59-like complement inhibitors in schistosomes as part of an immune evasion strategy. Methodology/Principal Findings: Herein, we describe the molecular characterization of seven putative SmCD59-like genes and attempt to address the putative biological function of two isoforms. Superimposition analysis of the 3D structure of hCD59 and schistosome sequences revealed that they contain the three-fingered protein domain (TFPD). However, the conserved amino acid residues involved in complement recognition in mammals could not be identified. Real-time RT-PCR and Western blot analysis determined that most of these genes are up-regulated in the transition from free-living cercaria to adult worm stage. Immunolocalization experiments and tegument preparations confirm that at least some of the SmCD59-like proteins are surface-localized; however, significant expression was also detected in internal tissues of adult worms. Finally, the involvement of two SmCD59 proteins in complement inhibition was evaluated by three different approaches: (i) a hemolytic assay using recombinant soluble forms expressed in Pichia pastoris and E. coli; (ii) complement-resistance of CHO cells expressing the respective membrane-anchored proteins; and (iii) the complement killing of schistosomula after gene suppression by RNAi. Our data indicated that these proteins are not involved in the regulation of complement activation. Conclusions: Our results suggest that this group of proteins belongs to the TFPD superfamily. Their expression is associated to intra-host stages, present in the tegument surface, and also in intra-parasite tissues. Three distinct approaches using SmCD59 proteins to inhibit complement strongly suggested that these proteins are not complement inhibitors and their function in schistosomes remains to be determined.
Resumo:
Signal transduction pathways mediated by cyclic-bis(3'→5')-dimeric GMP (c-di-GMP) control many important and complex behaviors in bacteria. C-di-GMP is synthesized through the action of GGDEF domains that possess diguanylate cyclase activity and is degraded by EAL or HD-GYP domains with phosphodiesterase activity. There is mounting evidence that some important c-di-GMP-mediated pathways require protein-protein interactions between members of the GGDEF, EAL, HD-GYP and PilZ protein domain families. For example, interactions have been observed between PilZ and the EAL domain from FimX of Xanthomonas citri (Xac). FimX and PilZ are involved in the regulation of type IV pilus biogenesis via interactions of the latter with the hexameric PilB ATPase associated with the bacterial inner membrane. Here, we present the crystal structure of the ternary complex made up of PilZ, the FimX EAL domain (FimXEAL) and c-di-GMP. PilZ interacts principally with the lobe region and the N-terminal linker helix of the FimXEAL. These interactions involve a hydrophobic surface made up of amino acids conserved in a non-canonical family of PilZ domains that lack intrinsic c-di-GMP binding ability and strand complementation that joins β-sheets from both proteins. Interestingly, the c-di-GMP binds to isolated FimXEAL and to the PilZ-FimXEAL complex in a novel conformation encountered in c-di-GMP-protein complexes in which one of the two glycosidic bonds is in a rare syn conformation while the other adopts the more common anti conformation. The structure points to a means by which c-di-GMP and PilZ binding could be coupled to FimX and PilB conformational states