935 resultados para plasmons, dark field microscopy, gold particles, fluorescence enhancement
Resumo:
Coating and filler pigments have strong influence to the properties of the paper. Filler content can be even over 30 % and pigment content in coating is about 85-95 weight percent. The physical and chemical properties of the pigments are different and the knowledge of these properties is important for optimising of optical and printing properties of the paper. The size and shape of pigment particles can be measured by different analysers which can be based on sedimentation, laser diffraction, changes in electric field etc. In this master's thesis was researched particle properties especially by scanning electron microscope (SEM) and image analysis programs. Research included nine pigments with different particle size and shape. Pigments were analysed by two image analysis programs (INCA Feature and Poikki), Coulter LS230 (laser diffraction) and SediGraph 5100 (sedimentation). The results were compared to perceive the effect of particle shape to the performance of the analysers. Only image analysis programs gave parameters of the particle shape. One part of research was also the sample preparation for SEM. Individual particles should be separated and distinct in ideal sample. Analysing methods gave different results but results from image analysis programs corresponded even to sedimentation or to laser diffraction depending on the particle shape. Detailed analysis of the particle shape required high magnification in SEM, but measured parameters described very well the shape of the particles. Large particles (ecd~1 µm) could be used also in 3D-modelling which enabled the measurement of the thickness of the particles. Scanning electron microscope and image analysis programs were effective and multifunctional tools for particle analyses. Development and experience will devise the usability of analysing method in routine use.
Resumo:
Nanoparticles offer adjustable and expandable reactive surface area compared to the more traditional solid phase forms utilized in bioaffinity assays due to the high surface to-volume ratio. The versatility of nanoparticles is further improved by the ability to incorporate various molecular complexes such as luminophores into the core. Nanoparticle labels composed of polystyrene, silica, inorganic crystals doped with high number of luminophores, preferably lanthanide(III) complexes, are employed in bioaffinity assays. Other label species such as semiconductor crystals (quantum dots) or colloidal gold clusters are also utilized. The surface derivatization of such particles with biomolecules is crucial for the applicability to bioaffinity assays. The effectiveness of a coating is reliant on the biomolecule and particle surface characteristics and the selected coupling technique. The most critical aspects of the particle labels in bioaffinity assays are their size-dependent features. For polystyrene, silica and inorganic phosphor particles, these include the kinetics, specific activity and colloidal stability. For quantum dots and gold colloids, the spectral properties are also dependent on particle size. This study reports the utilization of europium(III)-chelate-embedded nanoparticle labels in the development of bioaffinity assays. The experimental covers both the heterogeneous and homogeneous assay formats elucidating the wide applicability of the nanoparticles. It was revealed that the employment of europium(III) nanoparticles in heterogeneous assays for viral antigens, adenovirus hexon and hepatitis B surface antigen (HBsAg), resulted in sensitivity improvement of 10-1000 fold compared to the reference methods. This improvement was attributed to the extreme specific activity and enhanced monovalent affinity of the nanoparticles conjugates. The applicability of europium(III)-chelate-doped nanoparticles to homogeneous assay formats were proved in two completely different experimental settings; assays based on immunological recognition or proteolytic activity. It was shown that in addition to small molecule acceptors, particulate acceptors may also be employed due to the high specific activity of the particles promoting proximity-induced reabsorptive energy transfer in addition to non-radiative energy transfer. The principle of proteolytic activity assay relied on a novel dual-step FRET concept, wherein the streptavidin-derivatized europium(III)-chelate-doped nanoparticles were used as donors for peptide substrates modified with biotin and terminal europium emission compliant primary acceptor and a secondary quencher acceptor. The recorded sensitized emission was proportional to the enzyme activity, and the assay response to various inhibitor doses was in agreement with those found in literature showing the feasibility of the technique. Experiments regarding the impact of donor particle size on the extent of direct donor fluorescence and reabsorptive excitation interference in a FRET-based application was conducted with differently sized europium(III)-chelate-doped nanoparticles. It was shown that the size effect was minimal
Resumo:
Spherical carbon coated iron particles of nanometric diameter in the 5-10 nm range have been produced by arc discharge at near-atmospheric pressure conditions (using 5-8·10 4 Pa of He). The particles exhibit a crystalline dense iron core with an average diameter 7.4 ± 2.0 nm surrounded by a sealed carbon shell, shown by transmission electron microscopy (TEM), selected-area diffrac- tion (SAED), energy-dispersive X-ray analysis (STEM-EDX) and electron energy loss spectroscopy (EELS). The SAED, EDX and EELS results indicate a lack of traces of core oxidized phases showing an efficient protection role of the carbon shell. The magnetic properties of the nanoparticles have been investigated in the 5-300 K temperature range using a superconducting quantum interference device (SQUID). The results reveal a superparamagnetic behaviour with an average monodomain diameter of 7.6 nm of the nanoparticles. The zero field cooled and field cooled (ZFC-FC)magnetization curves show a blocking temperature (TB)at room temperature very suitable for biomedical applications (drug delivery, magnetic resonance imaging-MRI-, hyperthermia).
Resumo:
The Letreiro do Quinto rock shelter is located in the rural area of the city of Pedro II, Piauí, Brazil. The sandstone walls of the shelter are covered with prehistoric rupestrian paintings, painted in patterns of yellow and light and dark red hues. The chemical-mineralogical characterization of the prehistoric pigments was made with energy dispersive spectroscopy, scanning electron microscopy, energy dispersive X-ray fluorescence and 57Fe transmission Mössbauer spectroscopy at 110 K. Results confirm the occurrence of hematite- and goethite-rich ochres and also that the pigment layers are indeed made of a mixture of clay minerals mixed with iron oxides.
Resumo:
A 1µs Molecular Dynamic simulation was performed with a realistic model system of Sodium Dodecyl Sulfate (SDS) micelles in aqueous solution, comprising of 360 DS-, 360 Na+ and 90000 water particles. After 300 ns three different micellar shapes and sizes 41, 68 and 95 monomers, were observed. The process led to stabilization in the total number of SDS clusters and an increase in the micellar radius to 2.23 nm, in agreement with experimental results. An important conclusion, is be aware that simulations employed in one aggregate, should be considered as a constraint. Size and shape distribution must be analyzed.
Resumo:
Here we report the validation of a derivatization method that makes use of fluorescamine as a selective reactant for the quantitative analysis of peptide and protein drugs in the dissolution profile from depot formulations. Typical current methods require separation of the nano/microparticles and time-consuming chromatographic runs. In this study we report a method which can be conducted without the need for complete physical separation of the particles or removal of the unreacted probe. This method was used here for the analysis of the release profile of octreotide in a depot formulation, with results in excellent agreement with reported chromatographic assays.
Resumo:
Plants of Senna occidentalis (sin. Cassia occidentalis) with mosaic symptoms were collected near a soybean (Glycine max) field where some plants exhibited symptoms of mosaic and blistering. A preliminary examination of leaf tissue from diseased S. occidentalis by electron microscopy revealed the presence of pinwheel inclusions as well as long flexuous particles, indicating the presence of a potyvirus. Host range, serology, and amino acid sequence from this potyvirus were similar to those from other Brazilian isolates of Soybean mosaic virus (SMV). The 3'- terminal region of the genomic RNA was cloned and a cDNA sequence of 1.9 kb upstream of the poly (A) tract was determined. The sequence contains a single open reading frame and a 3'- non-translated region (NTR) of 259 bp. The nucleotide sequence of the CP gene of SMV-Soc was 98% identical to that of Brazilian isolates SMV-B, SMV-L, and SMV-FT10. The percentage of nucleotide identity of their 3'-NTR's was 91, 98, and 99% in relation to SMV-L, SMV-B, and SMV-FT10, respectively. In contrast to other Brazilian SMV isolates studied, SMV-Soc was able to infect sunflower (Helianthus annuus). Based on these results, the S. occidentalis isolate was identified as a new strain of SMV belonging to the SMV strain, group G5 and was named SMV-Soc. This is the first report of naturaly occurring SMV infecting plants of S. occidentalis in Brazil, adding this weed as a new source of SMV in the field.
Resumo:
The Mal de Río Cuarto disease is caused by Mal de Río Cuarto virus (MRCV) transmitted by Delphacodes kuscheli. Comparative studies were carried out on the cytopathological alterations produced by MRCV in corn (Zea mays), wheat (Triticum aestivum) and barley (Hordeum vulgare), as seen with a transmission electron microscope. Corn plants were infected with viruliferous D. kuscheli collected from the endemic disease area (i.e. Río Cuarto County, Córdoba, Argentina). For the viral transmission to small grain cereal plants, laboratory rared insects were used. In this case, the inoculum source was wheat and barley plants infected with MRCV isolate grown in a greenhouse. Leaf samples with conspicuous symptoms were collected: enations and size reduction in corn; crenatures, swelling veins and dark green color in small grain cereals. Viral infection was corroborated by DAS-ELISA. Viroplasms containing complete and incomplete virus particles and fibrillar material were found in the cytoplasm of infected cells in all species. Mature virions were between 60 and 70 nm diameter. In wheat and barley, viroplasms and dispersed particles were observed only in phloem, while in corn virions were also found in cells of the bundle sheath. Crystalline arrays of particles were detected in corn enation constitutive cells. Tubular inclusions were found only in wheat samples. The three species showed abnormalities in the chloroplasts of affected cells. The results showed that MRCV cytopathology has similarities with other viruses from the genus Fijivirus, family family Reoviridae, but slight differences depending upon the host plant.
Resumo:
Due to font problem on the tilte field the titlte of the thesis is corrected here. The title of the thesis is: Superconducting properties and their enhancement in ReBa2Cu3O7-delta (RE = Y and Gd) films prepared by pulsed laser deposition
Resumo:
The effectiveness of water removal on press section is very important for a paper and board machine’s functioning, efficiency and economy. Today, the most effective method for wet pressing is shoe press technology. Metso has carried out a number of studies concerning anew type of water removal method for a press section, which has also been patented. These studies include rough sketches and some test runs. These issues form the basis of this thesis. The objective of this work was to gather together information for a new and enhanced waterremoval method for a press section by studying the functioning of the device andcarrying out test runs. This method is referred to here as Hydronip. The main goal was tobuild a functional test site which fulfills all the necessary requirements and has all thenecessary information gathering devices. The design process was carried out by emphasizing the safety aspects. The goal was also to gather together information about the nip structure in running conditions, the seal function, and to carry out the nip tests with paper or board wads. This thesis consists of a theory part, the design and construction of the test site, and carrying out test runs through information gathering. The theory part consists of the principals of water removal from a press section, Hydronip construction, and the requirements for the test place. The safety aspects were taken into account especially in test runs, but also in the assembly stages. The design and construction of the test site includes the selection of equipment and surroundings that are needed for managing the test runs in the best possible way at certain premises. The test site included the equipment that was already on the premises. Some equipment could be used as it was but some equipment had to be manufactured or modified from existing equipment. A functional test site with information gathering devices was accomplished as a result of thethesis. Test runs demonstrated that the Hydronip concept is, at least on a small scale,functional. Short-term tests for seal functioning showed that the seal can be lubricatedsufficiently under different kinds of nip load situations. Wad tests demonstrated that the metal belt is durable against different sizes of external particles. The seal also endured wad tests even though the pressure impacts impaired the lubrication. MTS tests showing dry content increases, combined with a rough cost calculation and the basic function of the machine in test runs, show that with some further study Hydronip could be a promising new product for water removal from a paper or board machine’s press section.
Resumo:
In mature mangrove plants Rhizophora mangle L. and Laguncularia racemosa Gaerth. growing under field conditions, photosystem 2 (PS2) photochemical efficiency, determined by the ratio of variable to maximum fluorescence (Fν/Fm), increased during the day in response to salinity in the rainy seasons. During the dry season, fluorescence values (Fo) were higher than those observed in rainy season. In addition, Fo decreased during the day in both season and species, except for R. mangle during the dry season. A positive correlation among Fν/Fm and salinity values was obtained for R. mangle and L. Racemosa during the dry and rainy seasons, showing that photosynthetic performance is maintained in both species under high salinities. Carotenoid content was higher in L. Racemosa in both seasons, which represents an additional mechanism against damage to the photosynthetic machinery. The chlorophyll content was not affected by salinity in either species.
Resumo:
This case study explored value proposition and relationship marketing de-terminants in the HVAC (Heating, Ventilation and Air Conditioning) indus-try. Concretely, the case involved Purmo, a prominent brand and market leader radiator manufacturer, its relationship marketing practices with the retailers of their product (radiator installers) and the value proposition which is being used to reach the end-user. In the field work, five heating experts/entrepreneurs in the installation business were interviewed and asked about their opinion on Purmo and the end-user’s needs. The findings suggest that while installers appreciate Purmo as a supplier and respect it as a company, the loyalty that they have towards it has no repercussions on their product advocacy to ultimate consumers. Installers proved to be attracted to standard model radiators and to be apathetic to the benefits that more advanced models can provide. The reasons for this behavior were found to be their preference for products with better availa-bility and their reluctance to interfere with the customers’ decision making processes.
Resumo:
The acceleration of solar energetic particles (SEPs) by flares and coronal mass ejections (CMEs) has been a major topic of research for the solar-terrestrial physics and geophysics communities for decades. This thesis discusses theories describing first-order Fermi acceleration of SEPs through repeated crossings at a CME-driven shock. We propose that particle trapping occurs through self-generated Alfvén waves, leading to a turbulent trapping region in front of the shock. Decelerating coronal shocks are shown to be capable of efficient SEP acceleration, provided seed particle injection is sufficient. Quasi-parallel shocks are found to inject thermal particles with good efficiency. The roles of minimum injection velocities, cross-field diffusion, downstream scattering efficiency and cross-shock potential are investigated in detail, with downstream isotropisation timescales having a major effect on injection efficiency. Accelerated spectra of heavier elements up to iron are found to exhibit significantly harder spectra than protons. Accelerated spectra cut-off energies are found to scale proportional to (Q/A)1.5, which is explained through analysis of the spectral shape of amplified Alfvénic turbulence. Acceleration times to different threshold energies are found to be non-linear, indicating that self-consistent time-dependent simulations are required in order to expose the full extent of acceleration dynamics. The well-established quasilinear theory (QLT) of particle scattering is investigated by comparing QLT scattering coefficients with those found via full-orbit simulations. QLT is found to overemphasise resonance conditions. This finding supports the simplifications implemented in the presented coronal shock acceleration (CSA) simulation software. The CSA software package is used to simulate a range of acceleration scenarios. The results are found to be in agreement with well-established particle acceleration theory. At the same time, new spatial and temporal dynamics of particle population trapping and wave evolution are revealed.
Resumo:
Surface chemistry is of great importance in plant biomass engineering and applications. The surface chemical composition of biomass which includes lignin, carbohydrates and extractives influences its interactions with chemical agents, such as pulp processing/papermaking chemicals, or enzymes for different purposes. In this thesis, the changes in the surface chemical composition of lignocellulosic biomass after physical modification for the improvement of resulting paper properties and chemical treatment for the enhancement of enzymatic hydrolysis were investigated. Low consistency (LC) refining was used as physical treatment of bleached softwood and hardwood pulp samples, and the surface chemistry of refined samples was investigated. The refined pulp was analysed as whole pulp while the fines-free fibre samples were characterized separately. The fines produced in LCrefining contributed to an enlarged surface specific area as well as the change of surface coverage by lignin and extractives, as investigated by X-ray photoelectron spectroscopy (XPS). The surface coverage by lignin of the whole pulp decreased after refining while the surface coverage by extractives increased both for pine and eucalyptus. In the case of pine, the removal of fines resulted in reduction of the surface coverage by extractives, while the surface coverage by lignin increased on fibre sample (without fines). In the case of eucalyptus, the surface coverage by lignin of fibre samples decreased after the removal of fines. In addition, the surface distribution of carbohydrates, lignin and extractives of pine and eucalyptus samples was determined by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). LC-refining increased the amounts of pentose, hexose and extractives on the surface of pine samples. ToF-SIMS also gave clear evidence about xylan deposition and reduction of surface lignin distribution on the fibre of eucalyptus. However, the changes in the surface chemical composition during the physical treatment has led to an increase in the adsorption of fluorescent whitening agents (FWAs) on fibres due to a combination of electro-static forces, specific surface area of fibres and hydrophobic interactions. Various physicochemical pretreatments were conducted on wood and non-wood biomass for enhancing enzymatic hydrolysis of polysaccharides, and the surface chemistry of the pretreated and enzymatically hydrolysed samples was investigated by field emission scanning electron microscopy (FE-SEM), XPS and ToF-SIMS. A hydrotrope was used as a relatively novel pretreatment technology both in the case of wood and non-wood biomass. For comparison, ionic liquid and hydrothermal pretreatments were applied on softwood and hardwood as well. Thus, XPS analysis showed that the surface lignin was more efficiently removed by hydrotropic pretreatment compared to ionic liquid or hydrothermal pretreatments. SEM analysis also found that already at room temperature the ionic liquid pretreatments were more effective in swelling the fibres compared with hydrotropic pretreatment at elevated temperatures. The enzymatic hydrolysis yield of hardwood was enhanced due to the decrease in surface coverage of lignin, which was induced by hydrotropic treatment. However, hydrotropic pretreatment was not appropriate for softwood because of the predominance of guaiacyl lignin structure in this material. In addition, the reduction of surface lignin and xylan during pretreatment and subsequent increase in cellulose hydrolysis by enzyme could be observed from ToF-SIMS results. The characterisation of the non-wood biomass (e.g. sugarcane bagasse and common reed) treated by hydrotropic method, alkaline and alkaline hydrogen peroxide pretreatments were carried out by XPS and ToF-SIMS. According to the results, the action for the removal of the surface lignin of non-wood biomass by hydrotropic pretreatment was more significant compared to alkaline and alkaline hydrogen peroxide pretreatments, although a higher total amount of lignin could be removed by alkaline and alkaline hydrogen peroxide pretreatment. Furthermore, xylan could be remarkably more efficiently removed by hydrotropic method. Therefore, the glucan yield achieved from hydrotropic treated sample was higher than that from samples treated with alkaline or alkaline hydrogen peroxide. Through the use of ToF-SIMS, the distribution and localization of lignin and carbohydrates on the surface of ignocelluloses during pretreatment and enzymatic hydrolysis could be detected, and xylan degradation during enzymatic hydrolysis could also be assessed. Thus, based on the results from XPS and ToF-SIMS, the mechanism of the hydrotropic pretreatment in improving the accessibility of enzymes to fibre and further ameliorating of the enzymatic saccharification could be better elucidated.
Resumo:
The ovule ontogenesis and the megasporogenesis events were studied under bright field, fluorescence and scanning electron microscopy. The primordium is 3-zonate and gives rise to a hemianatropous, bitegmic and crassinucellate ovule. The archesporium may consist of one or more archesporial cells, but only one undergoes meiosis, forming a linear tetrad. Normally, only a single megaspore is functional in the chalazal position, but occasionally two functional chalazal megaspores arise. The present study provides additional information on embryological characters in the Adesmieae tribe and discusses their taxonomic significance to the Leguminosae family.