665 resultados para photorefractive solitons
Resumo:
In this document we explore the issue of $L^1\to L^\infty$ estimates for the solution operator of the linear Schr\"{o}dinger equation, \begin{align*} iu_t-\Delta u+Vu&=0 &u(x,0)=f(x)\in \mathcal S(\R^n). \end{align*} We focus particularly on the five and seven dimensional cases. We prove that the solution operator precomposed with projection onto the absolutely continuous spectrum of $H=-\Delta+V$ satisfies the following estimate $\|e^{itH} P_{ac}(H)\|_{L^1\to L^\infty} \lesssim |t|^{-\frac{n}{2}}$ under certain conditions on the potential $V$. Specifically, we prove the dispersive estimate is satisfied with optimal assumptions on smoothness, that is $V\in C^{\frac{n-3}{2}}(\R^n)$ for $n=5,7$ assuming that zero is regular, $|V(x)|\lesssim \langle x\rangle^{-\beta}$ and $|\nabla^j V(x)|\lesssim \langle x\rangle^{-\alpha}$, $1\leq j\leq \frac{n-3}{2}$ for some $\beta>\frac{3n+5}{2}$ and $\alpha>3,8$ in dimensions five and seven respectively. We also show that for the five dimensional result one only needs that $|V(x)|\lesssim \langle x\rangle^{-4-}$ in addition to the assumptions on the derivative and regularity of the potential. This more than cuts in half the required decay rate in the first chapter. Finally we consider a problem involving the non-linear Schr\"{o}dinger equation. In particular, we consider the following equation that arises in fiber optic communication systems, \begin{align*} iu_t+d(t) u_{xx}+|u|^2 u=0. \end{align*} We can reduce this to a non-linear, non-local eigenvalue equation that describes the so-called dispersion management solitons. We prove that the dispersion management solitons decay exponentially in $x$ and in the Fourier transform of $x$.
Resumo:
Many of the equations describing the dynamics of neural systems are written in terms of firing rate functions, which themselves are often taken to be threshold functions of synaptic activity. Dating back to work by Hill in 1936 it has been recognized that more realistic models of neural tissue can be obtained with the introduction of state-dependent dynamic thresholds. In this paper we treat a specific phenomenological model of threshold accommodation that mimics many of the properties originally described by Hill. Importantly we explore the consequences of this dynamic threshold at the tissue level, by modifying a standard neural field model of Wilson-Cowan type. As in the case without threshold accommodation classical Mexican-Hat connectivity is shown to allow for the existence of spatially localized states (bumps) in both one and two dimensions. Importantly an analysis of bump stability in one dimension, using recent Evans function techniques, shows that bumps may undergo instabilities leading to the emergence of both breathers and traveling waves. Moreover, a similar analysis for traveling pulses leads to the conditions necessary to observe a stable traveling breather. In the regime where a bump solution does not exist direct numerical simulations show the possibility of self-replicating bumps via a form of bump splitting. Simulations in two space dimensions show analogous localized and traveling solutions to those seen in one dimension. Indeed dynamical behavior in this neural model appears reminiscent of that seen in other dissipative systems that support localized structures, and in particular those of coupled cubic complex Ginzburg-Landau equations. Further numerical explorations illustrate that the traveling pulses in this model exhibit particle like properties, similar to those of dispersive solitons observed in some three component reaction-diffusion systems. A preliminary account of this work first appeared in S Coombes and M R Owen, Bumps, breathers, and waves in a neural network with spike frequency adaptation, Physical Review Letters 94 (2005), 148102(1-4).
Resumo:
We report for the first time, rogue waves generation in a mode-locked fiber laser that worked in multiple-soliton state in which hundreds of solitons occupied the whole laser cavity. Using real-time spatio-temporal intensity dynamics measurements, it is unveiled that nonlinear soliton collision accounts for the formation of rogue waves in this laser state. The nature of interactions between solitons are also discussed. Our observation may suggest similar formation mechanisms of rogue waves in other systems.
Resumo:
Clusters of temporal optical solitons—stable self-localized light pulses preserving their form during propagation—exhibit properties characteristic of that encountered in crystals. Here, we introduce the concept of temporal solitonic information crystals formed by the lattices of optical pulses with variable phases. The proposed general idea offers new approaches to optical coherent transmission technology and can be generalized to dispersion-managed and dissipative solitons as well as scaled to a variety of physical platforms from fiber optics to silicon chips. We discuss the key properties of such dynamic temporal crystals that mathematically correspond to non-Hermitian lattices and examine the types of collective mode instabilities determining the lifetime of the soliton train. This transfer of techniques and concepts from solid state physics to information theory promises a new outlook on information storage and transmission.
Resumo:
Antecedentes La ectasia corneal post-lasik (ECPL) es una complicación infrecuente, pero devastadora en la cirugía lasik (queratomileusis asistida con éxcimer láser) para el tratamiento de la miopía con o sin astigmatismo. Con base en la tomografía corneal por elevación por imágenes de Scheimpflug (Sistema Pentacam HR, Oculus Wetzlar, Alemania), se propone un novedoso índice acumulativo de riesgo para ser utilizado como prueba diagnóstica de tamizaje y así prevenir esta complicación. Metodología Se realizó un estudio observacional analítico, de corte transversal tipo pruebas diagnósticas, con el fin de evaluar las características operativas del índice NICE teniendo como estándar de referencia el módulo de Belin-Ambrosio (Pentacam HR) utilizando un modelo de regresión logística binaria, tablas de contingencia y estimando el área bajo la curva ROC. Resultados Se evaluaron 361 ojos de los cuales el 59,3% provenían de pacientes de sexo femenino, la edad media global fue de 30 años (RIC 11,0). El modelo logístico binario aplicado se construyó con base en cuatro variables independientes cuantitativas (K2, PAQUI, EP e I-S) y una cualitativa (SEXO), y se determinó su relación con la variable dependiente, NICE (puntaje final). Las variables predictoras fueron estadísticamente significativas clasificando adecuadamente el 92,9% de los ojos evaluados según presencia o ausencia de riesgo. El coeficiente de Nagelkerke fue de 74,4%. Conclusiones El índice acumulativo de riesgo NICE es una herramienta diagnóstica novedosa en la evaluación de candidatos a cirugía refractiva lasik para prevenir la ectasia secundaria.