938 resultados para optimal-stocking model
Resumo:
Reconciliation can be divided into stages, each stage representing the performance of a mining operation, such as: long-term estimation, short-term estimation, planning, mining and mineral processing. The gold industry includes another stage which is the budget, when the company informs the financial market of its annual production forecast. The division of reconciliation into stages increases the reliability of the annual budget informed by the mining companies, while also detecting and correcting the critical steps responsible for the overall estimation error by the optimization of sampling protocols and equipment. This paper develops and validates a new reconciliation model for the gold industry, which is based on correct sampling practices and the subdivision of reconciliation into stages, aiming for better grade estimates and more efficient control of the mining industry`s processes, from resource estimation to final production.
Resumo:
This work explores the design of piezoelectric transducers based on functional material gradation, here named functionally graded piezoelectric transducer (FGPT). Depending on the applications, FGPTs must achieve several goals, which are essentially related to the transducer resonance frequency, vibration modes, and excitation strength at specific resonance frequencies. Several approaches can be used to achieve these goals; however, this work focuses on finding the optimal material gradation of FGPTs by means of topology optimization. Three objective functions are proposed: (i) to obtain the FGPT optimal material gradation for maximizing specified resonance frequencies; (ii) to design piezoelectric resonators, thus, the optimal material gradation is found for achieving desirable eigenvalues and eigenmodes; and (iii) to find the optimal material distribution of FGPTs, which maximizes specified excitation strength. To track the desirable vibration mode, a mode-tracking method utilizing the `modal assurance criterion` is applied. The continuous change of piezoelectric, dielectric, and elastic properties is achieved by using the graded finite element concept. The optimization algorithm is constructed based on sequential linear programming, and the concept of continuum approximation of material distribution. To illustrate the method, 2D FGPTs are designed for each objective function. In addition, the FGPT performance is compared with the non-FGPT one.
Resumo:
The computational design of a composite where the properties of its constituents change gradually within a unit cell can be successfully achieved by means of a material design method that combines topology optimization with homogenization. This is an iterative numerical method, which leads to changes in the composite material unit cell until desired properties (or performance) are obtained. Such method has been applied to several types of materials in the last few years. In this work, the objective is to extend the material design method to obtain functionally graded material architectures, i.e. materials that are graded at the local level (e.g. microstructural level). Consistent with this goal, a continuum distribution of the design variable inside the finite element domain is considered to represent a fully continuous material variation during the design process. Thus the topology optimization naturally leads to a smoothly graded material system. To illustrate the theoretical and numerical approaches, numerical examples are provided. The homogenization method is verified by considering one-dimensional material gradation profiles for which analytical solutions for the effective elastic properties are available. The verification of the homogenization method is extended to two dimensions considering a trigonometric material gradation, and a material variation with discontinuous derivatives. These are also used as benchmark examples to verify the optimization method for functionally graded material cell design. Finally the influence of material gradation on extreme materials is investigated, which includes materials with near-zero shear modulus, and materials with negative Poisson`s ratio.
Resumo:
Wetting balance tests of copper sheets submerged in tin solder baths were carried out in a completely automatic wetting balance. Wetting curves were examined for three different values of sheet thickness and four different solder bath temperatures. Most of the wetting curves showed a distorted shape relative to that of a standard curve, preventing calculation of important wetting parameters, such as the wetting rate and the wetting force. The wetting tests showed that the distortion increased for a thicker sheet thickness and a lower solder bath temperature, being the result of solder bath solidification around the submerged sheet substrate. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A multiphase deterministic mathematical model was implemented to predict the formation of the grain macrostructure during unidirectional solidification. The model consists of macroscopic equations of energy, mass, and species conservation coupled with dendritic growth models. A grain nucleation model based on a Gaussian distribution of nucleation undercoolings was also adopted. At some solidification conditions, the cooling curves calculated with the model showed oscillations (""wiggles""), which prevented the correct prediction of the average grain size along the structure. Numerous simulations were carried out at nucleation conditions where the oscillations are absent, enabling an assessment of the effect of the heat transfer coefficient on the average grain size and columnar-to-equiaxed transition.
Resumo:
Here, we study the stable integration of real time optimization (RTO) with model predictive control (MPC) in a three layer structure. The intermediate layer is a quadratic programming whose objective is to compute reachable targets to the MPC layer that lie at the minimum distance to the optimum set points that are produced by the RTO layer. The lower layer is an infinite horizon MPC with guaranteed stability with additional constraints that force the feasibility and convergence of the target calculation layer. It is also considered the case in which there is polytopic uncertainty in the steady state model considered in the target calculation. The dynamic part of the MPC model is also considered unknown but it is assumed to be represented by one of the models of a discrete set of models. The efficiency of the methods presented here is illustrated with the simulation of a low order system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The main scope of this work is the implementation of an MPC that integrates the control and the economic optimization of the system. The two problems are solved simultaneously through the modification of the control cost function that includes an additional term related to the economic objective. The optimizing MPC is based on a quadratic program (QP) as the conventional MPC and can be solved with the available QP solvers. The method was implemented in an industrial distillation system, and the results show that the approach is efficient and can be used, in several practical cases. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A model predictive controller (MPC) is proposed, which is robustly stable for some classes of model uncertainty and to unknown disturbances. It is considered as the case of open-loop stable systems, where only the inputs and controlled outputs are measured. It is assumed that the controller will work in a scenario where target tracking is also required. Here, it is extended to the nominal infinite horizon MPC with output feedback. The method considers an extended cost function that can be made globally convergent for any finite input horizon considered for the uncertain system. The method is based on the explicit inclusion of cost contracting constraints in the control problem. The controller considers the output feedback case through a non-minimal state-space model that is built using past output measurements and past input increments. The application of the robust output feedback MPC is illustrated through the simulation of a low-order multivariable system.
Resumo:
Demands for optimal boiler performance and increased concerns in lowering emission have always been the driving force in the reevaluation and evolution of the Kraft boiler: specifically the air distribution strategies that are directly related to achieving increased residence time of flue gas combustion inside the furnace which in turn lowers atmosphere emission levels and enhances boiler operation. This paper presents the results of a study that analyzes the interaction of the different multilevel air injections have on flue gas flow patterns including various quaternary air supply arrangements. Additionally, this study assesses the performance of the CFD (Computational Fluid Dynamics) model against data available in literature. Simulations were performed considering isothermal and incompressible flows, and did not take into account thermal phenomena or chemical reactions. The numerical solutions generated proved to be coherently related to the data available in literature, and provided proof of the efficiency of tertiary level air injection, as well as revealed that quaternary air injection ports arranged in a symmetrical configuration is most suitable for optimal equipment operation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A procedure is proposed for the determination of the residence time distribution (RTD) of curved tubes taking into account the non-ideal detection of the tracer. The procedure was applied to two holding tubes used for milk pasteurization in laboratory scale. Experimental data was obtained using an ionic tracer. The signal distortion caused by the detection system was considerable because of the short residence time. Four RTD models, namely axial dispersion, extended tanks in series, generalized convection and PER + CSTR association, were adjusted after convolution with the E-curve of the detection system. The generalized convection model provided the best fit because it could better represent the tail on the tracer concentration curve that is Caused by the laminar velocity profile and the recirculation regions. Adjusted model parameters were well cot-related with the now rate. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this paper is to develop and validate a mechanistic model for the degradation of phenol by the Fenton process. Experiments were performed in semi-batch operation, in which phenol, catechol and hydroquinone concentrations were measured. Using the methodology described in Pontes and Pinto [R.F.F. Pontes, J.M. Pinto, Analysis of integrated kinetic and flow models for anaerobic digesters, Chemical Engineering journal 122 (1-2) (2006) 65-80], a stoichiometric model was first developed, with 53 reactions and 26 compounds, followed by the corresponding kinetic model. Sensitivity analysis was performed to determine the most influential kinetic parameters of the model that were estimated with the obtained experimental results. The adjusted model was used to analyze the impact of the initial concentration and flow rate of reactants on the efficiency of the Fenton process to degrade phenol. Moreover, the model was applied to evaluate the treatment cost of wastewater contaminated with phenol in order to meet environmental standards. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The photodegradation of the herbicide clomazone in the presence of S(2)O(8)(2-) or of humic substances of different origin was investigated. A value of (9.4 +/- 0.4) x 10(8) m(-1) s(-1) was measured for the bimolecular rate constant for the reaction of sulfate radicals with clomazone in flash-photolysis experiments. Steady state photolysis of peroxydisulfate, leading to the formation of the sulfate radicals, in the presence of clomazone was shown to be an efficient photodegradation method of the herbicide. This is a relevant result regarding the in situ chemical oxidation procedures involving peroxydisulfate as the oxidant. The main reaction products are 2-chlorobenzylalcohol and 2-chlorobenzaldehyde. The degradation kinetics of clomazone was also studied under steady state conditions induced by photolysis of Aldrich humic acid or a vermicompost extract (VCE). The results indicate that singlet oxygen is the main species responsible for clomazone degradation. The quantum yield of O(2)(a(1)Delta(g)) generation (lambda = 400 nm) for the VCE in D(2)O, Phi(Delta) = (1.3 +/- 0.1) x 10(-3), was determined by measuring the O(2)(a(1)Delta(g)) phosphorescence at 1270 nm. The value of the overall quenching constant of O(2)(a(1)Delta(g)) by clomazone was found to be (5.7 +/- 0.3) x 10(7) m(-1) s(-1) in D(2)O. The bimolecular rate constant for the reaction of clomazone with singlet oxygen was k(r) = (5.4 +/- 0.1) x 10(7) m(-1) s(-1), which means that the quenching process is mainly reactive.
Resumo:
Several MPC applications implement a control strategy in which some of the system outputs are controlled within specified ranges or zones, rather than at fixed set points [J.M. Maciejowski, Predictive Control with Constraints, Prentice Hall, New Jersey, 2002]. This means that these outputs will be treated as controlled variables only when the predicted future values lie outside the boundary of their corresponding zones. The zone control is usually implemented by selecting an appropriate weighting matrix for the output error in the control cost function. When an output prediction is inside its zone, the corresponding weight is zeroed, so that the controller ignores this output. When the output prediction lies outside the zone, the error weight is made equal to a specified value and the distance between the output prediction and the boundary of the zone is minimized. The main problem of this approach, as long as stability of the closed loop is concerned, is that each time an output is switched from the status of non-controlled to the status of controlled, or vice versa, a different linear controller is activated. Thus, throughout the continuous operation of the process, the control system keeps switching from one controller to another. Even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. Here, a stable M PC is developed for the zone control of open-loop stable systems. Focusing on the practical application of the proposed controller, it is assumed that in the control structure of the process system there is an upper optimization layer that defines optimal targets to the system inputs. The performance of the proposed strategy is illustrated by simulation of a subsystem of an industrial FCC system. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
For the optimal design of plate heat exchangers (PHEs), an accurate thermal-hydraulic model that takes into account the effect of the flow arrangement on the heat load and pressure drop is necessary. In the present study, the effect of the flow arrangement on the pressure drop of a PHE is investigated. Thirty two different arrangements were experimentally tested using a laboratory scale PHE with flat plates. The experimental data was used for (a) determination of an empirical correlation for the effect of the number of passes and number of flow channels per pass on the pressure drop; (b) validation of a friction factor model through parameter estimation; and (c) comparison with the simulation results obtained with a CFD (computational fluid dynamics) model of the PHE. All three approaches resulted in a good agreement between experimental and predicted values of pressure drop. Moreover, the CFD model is used for evaluating the flow maldistribution in a PHE with two channels Per Pass. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work proposes a refined technique for the extraction of the generation lifetime in single- and double-gate partially depleted SOI nMOSFETs. The model presented in this paper, based on the drain current switch-off transients, takes into account the influence of the laterally non-uniform channel doping, caused by the presence of the halo implanted region, and the amount of charge controlled by the drain and source junctions on the floating body effect when the channel length is reduced. The obtained results for single- gate (SG) devices are compared with two-dimensional numerical simulations and experimental data, extracted for devices fabricated in a 0.1 mu m SOI CMOS technology, showing excellent agreement. The improved model to determine the generation lifetime in double-gate (DG) devices beyond the considerations previously presented also consider the influence of the silicon layer thickness on the drain current transient. The extracted data through the improved model for DG devices were compared with measurements and two-dimensional numerical simulations of the SG devices also presenting a good adjustment with the channel length reduction and the same tendency with the silicon layer thickness variation.