937 resultados para modulus of elasticity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a computational tool concerning the computation of flexural and fracture toughness of cement based composites is presented. Firstly, RILEM`s (Reunion Internationale des Laboratoires d`Essais de Materiaux) recommendations related to the analysis of FRC in three-point bend tests are discussed in their relevant aspects regarding the computational implementations. The determination of other mechanical properties such as the Young modulus has been added to the program. Taking this into account, a new formulation based on displacements is used. In the second part of the paper, the determination of fracture properties of concrete, such as the fracture energy, G(F) , and the fracture toughness, K-IC(S), is discussed regarding the computational strategies used in the implementations. Several features whereby anterior data can be reanalyzed, obtained from other standards and recommendations, have been incorporated into the program, therefore allowing comparative studies and back analysis activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the applicability of a new algorithm for the estimation of mechanical properties from instrumented indentation data was studied for thin films. The applicability was analyzed with the aid of both three-dimensional finite element simulations and experimental indentation tests. The numerical approach allowed studying the effect of the substrate on the estimation of mechanical properties of the film, which was conducted based on the ratio h(max)/l between maximum indentation depth and film thickness. For the experimental analysis, indentation tests were conducted on AISI H13 tool steel specimens, plasma nitrated and coated with TiN thin films. Results have indicated that, for the conditions analyzed in this work, the elastic deformation of the substrate limited the extraction of mechanical properties of the film/substrate system. This limitation occurred even at low h(max)/l ratios and especially for the estimation of the values of yield strength and strain hardening exponent. At indentation depths lower than 4% of the film thickness, the proposed algorithm estimated the mechanical properties of the film with accuracy. Particularly for hardness, precise values were estimated at h(max)/l lower than 0.1, i.e. 10% of film thickness. (C) 2010 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wear behavior of coatings has usually been described in terms of mechanical properties such as hardness (H) and effective elastic modulus (E*). Alternatively, an energy approach appears as a promising analysis taking into account the influence of those properties. In a nanoindentation test, the dissipated energy depends not only on the hardness and elastic modulus, but also on the elastic recovery (W(e)). This work aims to establish a relation between plastic deformation energy (E(p)) during depth-sensing indentation method and the grooving resistance of coatings in nanoscratch tests. An energy dissipation coefficient (K(d)) was defined, calculated as the ratio of the plastic to the total deformation energy (E(p)/E(t)), which represents the energy dissipation of materials. Reactive depositions using titanium as the target and nitrogen and methane as reactive gases were obtained by triode magnetron sputtering, in order to assess wear and nanoindentation data. A topographical, chemical and microstructural characterization has been conducted using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), wave dispersion spectroscopy (WDS), scanning electron (SEM) and atomic force microscopy (AFM) techniques. Nanoscratch results showed that the groove depth was well correlated to the energy dissipation coefficient of the coatings. On the other hand, a reduction in the coefficient was found when the elastic recovery was increased. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of recycled aggregate produced from mixed (masonry and concrete) construction and demolition (C&D) waste are highly variable, and this restricts the use of such aggregate in structural concrete production. The development of classification techniques capable of reducing this variability is instrumental for quality control purposes and the production of high quality C&D aggregate. This paper investigates how the classification of C&D mixed coarse aggregate according to porosity influences the mechanical performance of concrete. Concretes using a variety of C&D aggregate porosity classes and different water/cement ratios were produced and the mechanical properties measured. For concretes produced with constant volume fractions of water, cement, natural sand and coarse aggregate from recycled mixed C&D waste, the compressive strength and Young modulus are direct exponential functions of the aggregate porosity. Sink and float technique is a simple laboratory density separation tool that facilitates the separation of cement particles with lower porosity, a difficult task when done only by visual sorting. For this experiment, separation using a 2.2 kg/dmA(3) suspension produced recycled aggregate (porosity less than 17%) which yielded good performance in concrete production. Industrial gravity separators may lead to the production of high quality recycled aggregate from mixed C&D waste for structural concrete applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The elastic mechanical behavior of elastic materials is modeled by a pair of independent constants (Young`s modulus and Poisson`s coefficient). A precise measurement for both constants is necessary in some applications, such as the quality control of mechanical elements and standard materials used for the calibration of some equipment. Ultrasonic techniques have been used because wave velocity depends on the elastic properties of the propagation medium. The ultrasonic test shows better repeatability and accuracy than the tensile and indentation test. In this work, the theoretical and experimental aspects related to the ultrasonic through-transmission technique for the characterization of elastic solids is presented. Furthermore, an amorphous material and some polycrystalline materials were tested. Results have shown an excellent repeatability and numerical errors that are less than 3% in high-purity samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computational design of a composite where the properties of its constituents change gradually within a unit cell can be successfully achieved by means of a material design method that combines topology optimization with homogenization. This is an iterative numerical method, which leads to changes in the composite material unit cell until desired properties (or performance) are obtained. Such method has been applied to several types of materials in the last few years. In this work, the objective is to extend the material design method to obtain functionally graded material architectures, i.e. materials that are graded at the local level (e.g. microstructural level). Consistent with this goal, a continuum distribution of the design variable inside the finite element domain is considered to represent a fully continuous material variation during the design process. Thus the topology optimization naturally leads to a smoothly graded material system. To illustrate the theoretical and numerical approaches, numerical examples are provided. The homogenization method is verified by considering one-dimensional material gradation profiles for which analytical solutions for the effective elastic properties are available. The verification of the homogenization method is extended to two dimensions considering a trigonometric material gradation, and a material variation with discontinuous derivatives. These are also used as benchmark examples to verify the optimization method for functionally graded material cell design. Finally the influence of material gradation on extreme materials is investigated, which includes materials with near-zero shear modulus, and materials with negative Poisson`s ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, poly(vinyl butyral) (PVB) film originated from the mechanical separation of windshields was tested as all impact modifier of Polyamide-6 (PA-6). The changes undergone by PVB film during the recycling process and the blend manufacturing were evaluated by thermal analyses, infrared spectroscopy and loss oil ignition. Blends of PA-6/original PVB film and PA-6/recovered PVB film were obtained in concentrations ranging from 90/10 to 60/40. The mechanical properties of the blends were investigated and explained in light of the blends morphologies, which in turns were correlated to the changes undergone by the PVB film during the recycling process. The original film presented a plasticizer content of 33 wt.%, which decreased to as low as 20 wt.%, after the recycling and blend preparation processes. The PA-6/PVB film blends presented lower values of tensile strength and Young`s modulus than Polyamide-6, but all blends presented a dramatic increase in their toughness, with a special feature for the 40 wt.%(, blend, which resulted in a super toughened material (impact strength exceeding 500 J/m). Similar results were obtained with recovered PVB film and super tough blends were also obtained. The use of recovered PVB resulted in a smaller improvement of the impact strength due to the loss of plasticizer undergone during the recycling process. The morphological observations showed that if the interparticle distance is smaller than around 0.2 mu m (critical value), the notched Izod impact strength values increase considerably and the fracture surface of blends exhibit characteristics of tough failure. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid latices of poly(styrene-co-butyl acrylate) were synthesized via in situ miniemulsion polymerization in the presence of 3 and 6 wt % organically modified montmorillonite (OMMT). Three different ammonium salts: cetyl trimethyl ammonium chloride (CTAC), alkyl dimethyl benzyl ammonium chloride (Dodigen), and distearyl dimethyl ammonium chloride (Praepagen), were investigated as organic modifiers. Increased affinity for organic liquids was observed after organic modification of the MMT. Stable hybrid latices were obtained even though miniemulsion stability was disturbed to some extent by the presence of the OMMTs during the synthesis. Highly intercalated and exfoliated polymer-MMT nanocomposites films were produced with good MMT dispersion throughout the polymeric matrix. Materials containing MMT modified with the 16 carbons alkyl chain salt (CTAC) resulted in the largest increments of storage modulus, indicating that single chain quaternary salts provide higher increments on mechanical properties. Films presenting exfoliated structure resulted in the largest increments in the onset temperature of decomposition. For the range of OMMT loading studied, the nanocomposite structure influenced more significantly the thermal stability properties of the hybrid material than did the OMMT loading. The film containing 3 wt % MMT modified with the two 18 carbons alkyl chains salt (Praepagen) provided the highest increment of onset temperature of decomposition. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 3658-3669, 2011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(3-hydroxybutyrate) (PHB) is a very promising biopolymer. In order to improve its processability and decrease its brittleness, PHB/elastomer blends can be prepared. In the work reported, the effect of the addition of a rubbery phase, i.e. ethylene - propylene-diene terpolymer (EPDM) or poly(vinyl butyral) (PVB), on the properties of PHB was studied. The effects of rubber type and of changing the PHB/elastomer blend processing method on the crystallinity and physical properties of the blends were also investigated. For blends based on PHB, the main role of EPDM is its nucleating effect evidenced by a decrease of crystallization temperature and an increase of crystallinity with increasing EPDM content regardless of the processing route. While EPDM has a weak effect on PHB glass transition temperature, PVB induces a marked decrease of this temperature thank to its plasticizer that swells the PHB amorphous phase. A promising solution to improve the mechanical properties of PHB seems to be the melt-processing of PHB with both plasticizer and EPDM. In fact, the plasticizer is more efficient than the elastomer in decreasing the PHB glass transition temperature and, because of the nucleating effect of EPDM, the decrease of the PHB modulus due to the plasticizer can be counterbalanced. (C) 2010 Society of Chemical Industry

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of temperature on the fast fracture behavior of aluminum nitride with 5 wt% Y(2)O(3) ceramic were investigated. Four-point flexural strength and fracture toughness were measured in air at several temperatures (30-1,300 A degrees C). The flexural strength gradually decreased with the increase of temperature up to 1,000 A degrees C due to the change in the fracture mode from transgranular to intergranular, and then became almost constant up to 1,300 A degrees C. Two main flaw types as fracture origin were identified: small surface flaw and large pores. The volume fraction of the large pores was only 0.01%; however, they limited the strength on about 50% of the specimens. The fracture toughness decreased slightly up to 800 A degrees C controlled by the elastic modulus change, and then decreased significantly at 1,000 A degrees C due to the decrease in the grain-boundary toughness. Above 1,000 A degrees C, the fracture toughness increased significantly, and at 1,300 A degrees C, its value was close to that measured at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyurethane composites reinforced with curaua fiber at 5, 10 and 20% mass/mass proportions were prepared by using the conventional melt-mixing method. The influence of curaua fibers on the thermal behavior and polymer cohesiveness in polyurethane matrix was evaluated by dynamic mechanical thermal analysis (DMTA) and by differential scanning calorimetry (DSC). This specific interaction between the fibers and the hard segment domain was influenced by the behavior of the storage modulus E` and the loss modulus EaEuro(3) curves. The polyurethane PU80 is much stiffer and resistant than the other composites at low temperatures up to 70A degrees C. All samples were thermoplastic and presented a rubbery plateau over a wide temperature range above the glass transition temperature and a thermoplastic flow around 170A degrees C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Instrumented indentation has been used to investigate the mechanical properties of BETAMATE 1496 (R) Epoxy adhesive. The properties of the adhesive were analyzed by measuring its hardness and its Young`s modulus in samples extracted from six different positions of the front door of a commercial passenger vehicle in two phases of processing: after application of the adhesive in the door assembling (""pre-cured"" state) and after final cure in the painting oven (""cured"" state). Special attention was given to setting the optimal parameters (""creep"" time and unloading time step) for the instrumented indentation testing for the present application. Young`s modulus values around 1.1 +/- 0.2 GPa and hardness values around 0.15 +/- 0.05 GPa were obtained for all samples, irrespective of the variation of the indentation parameters in the testing procedure and of the relative position of the adhesive in the door frame in both states. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the rheological behavior of block copolymers with different morphologies (lamellar, cylindrical, spherical, and disordered) and their clay-containing nanocomposites was studied using small amplitude oscillatory shear. The copolymers studied were one asymmetric starblock styrene-butadiene-styrene copolymer and four styrene-ethylene/butylenes-styrene copolymers with different molecular architectures, one of them being modified with maleic anhydride. The nanocomposites of those copolymers were prepared by adding organophilic clay using three different preparation techniques: melt mixing, solution casting, and a hybrid melt mixing-solution technique. The nanocomposites were characterized by X-ray diffraction and transmission electron microscopy, and their viscoelastic properties were evaluated and compared to the ones of the pure copolymers. The influence of copolymer morphology and presence of clay on the storage modulus (G`) curves was studied by the evaluation of the changes in the low frequency slope of log G` x log omega (omega: frequency) curves upon variation of temperature and clay addition. This slope may be related to the degree of liquid- or solid-like behavior of a material. It was observed that at temperatures corresponding to the ordered state, the rheological behavior of the nanocomposites depended mainly on the viscoelasticity of each type of ordered phase and the variation of the slope due to the addition of clay was small. For temperatures corresponding to the disordered state, however, the rheological behavior of the copolymer nanocomposites was dictated mostly by the degree of clay dispersion: When the clay was well dispersed, a strong solid-like behavior corresponding to large G` slope variations was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose an approach to the transient and steady-state analysis of the affine combination of one fast and one slow adaptive filters. The theoretical models are based on expressions for the excess mean-square error (EMSE) and cross-EMSE of the component filters, which allows their application to different combinations of algorithms, such as least mean-squares (LMS), normalized LMS (NLMS), and constant modulus algorithm (CMA), considering white or colored inputs and stationary or nonstationary environments. Since the desired universal behavior of the combination depends on the correct estimation of the mixing parameter at every instant, its adaptation is also taken into account in the transient analysis. Furthermore, we propose normalized algorithms for the adaptation of the mixing parameter that exhibit good performance. Good agreement between analysis and simulation results is always observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amorphous SiC(x)N(y) films have been deposited on (100) Si substrates by RF magnetron sputtering of a SiC target in a variable nitrogen-argon atmosphere. The as-deposited films were submitted to thermal anneling in a furnace under argon atmosphere at 1000 degrees C for 1 hour. Composition and structure of unannealed and annealed samples were investigated by RBS and FTIR. To study the electrical characteristics of SiC(x)N(y) films, Metal-insulator-semiconductor (MIS) structures were fabricated. Elastic modulus and hardness of the films were determined by nanoindentation. The results of these studies showed that nitrogen content and thermal annealing affect the electrical, mechanical and structural properties of SiC(x)N(y) films.