975 resultados para major histocompatibility complex gene
Resumo:
Hereditary hemochromatosis is a disorder of iron metabolism characterized by increased iron intake and progressive storage and is related to mutations in the HFE gene. Interactions between thalassemia and hemochromatosis may further increase iron overload. The ethnic background of the Brazilian population is heterogeneous and studies analyzing the simultaneous presence of HFE and thalassemia-related mutations have not been carried out. The aim of this study was to evaluate the prevalence of the H63D, S65C and C282Y mutations in the HFE gene among 102 individuals with alpha-thalassemia and 168 beta-thalassemia heterozygotes and to compare them with 173 control individuals without hemoglobinopathies. The allelic frequencies found in these three groups were 0.98, 2.38, and 0.29% for the C282Y mutation, 13.72, 13.70, and 9.54% for the H63D mutation, and 0, 0.60, and 0.87% for the S65C mutation, respectively. The chi-square test for multiple independent individuals indicated a significant difference among groups for the C282Y mutation, which was shown to be significant between the beta-thalassemia heterozygote and the control group by the Fisher exact test (P value = 0.009). The higher frequency of inheritance of the C282Y mutation in the HFE gene among beta-thalassemic patients may contribute to worsen the clinical picture of these individuals. In view of the characteristics of the Brazilian population, the present results emphasize the need to screen for HFE mutations in beta-thalassemia carriers.
Resumo:
Melanin is a very important pigment to human species, and besides defining skin, eyes and hair color, it is also involved in sun exposure protection. This pigment is classified into two subtypes: pheomelanin, which is responsible for lighter pigmentation and eumelanin, the dark pigment related. Due to this type of melanin variation it is possible to found different phenotypes of hair and skin color. The genetics MC1R variations are described as the most important for diversity in pigmentation, and this gene is directly related to the complex process of melanin synthesis. The use of these variations to phenotype prediction using genetic information has been used in Europe countries to infer physical features from biological samples, with the purpose of directing searches of criminal suspects and victims identification. The aim of this study was to analyze 8 major MC1R polymorphisms in a sample of Brazilian individuals. Analyzing 91 individuals, we observed with higher frequencies the polymorphisms rs1805005:G>T, rs2228479:G>A and rs885479:G>A, which are related to skin and hair colors, as previously showed in literature. These data suggest the possibility of predicting phenotype from genetic polymorphisms in Brazilian population. However it will be necessary to analyze a larger number of individuals to be able to confirm these associations and to perform a more detailed statistical analysis
Resumo:
Fumarate hydratases (FHs; EC 4.2.1.2) are enzymes that catalyze the reversible hydration of fumarate to S-malate. Parasitic protists that belong to the genus Leishmania and are responsible for a complex of vector-borne diseases named leishmaniases possess two genes that encode distinct putative FH enzymes. Genome sequence analysis of Leishmania major Friedlin reveals the existence of genes LmjF24.0320 and LmjF29.1960 encoding the putative enzymes LmFH-1 and LmFH-2, respectively. In the present work, the FH activity of both L. major enzymes has been confirmed. Circular dichroism studies suggest important differences in terms of secondary structure content when comparing LmFH isoforms and even larger differences when comparing them to the homologous human enzyme. CD melting experiments revealed that both LmFH isoforms are thermolabile enzymes. The catalytic efficiency under aerobic and anaerobic environments suggests that they are both highly sensitive to oxidation and damaged by oxygen. Intracellular localization studies located LmFH-1 in the mitochondrion, whereas LmFH-2 was found predominantly in the cytosol with possibly also some in glycosomes. The high degree of sequence conservation in different Leishmania species, together with the relevance of FH activity for the energy metabolism in these parasites suggest that FHs might be exploited as targets for broad-spectrum antileishmanial drugs. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background The sequencing of the D.melanogaster genome revealed an unexpected small number of genes (~ 14,000) indicating that mechanisms acting on generation of transcript diversity must have played a major role in the evolution of complex metazoans. Among the most extensively used mechanisms that accounts for this diversity is alternative splicing. It is estimated that over 40% of Drosophila protein-coding genes contain one or more alternative exons. A recent transcription map of the Drosophila embryogenesis indicates that 30% of the transcribed regions are unannotated, and that 1/3 of this is estimated as missed or alternative exons of previously characterized protein-coding genes. Therefore, the identification of the variety of expressed transcripts depends on experimental data for its final validation and is continuously being performed using different approaches. We applied the Open Reading Frame Expressed Sequence Tags (ORESTES) methodology, which is capable of generating cDNA data from the central portion of rare transcripts, in order to investigate the presence of hitherto unnanotated regions of Drosophila transcriptome. Results Bioinformatic analysis of 1,303 Drosophila ORESTES clusters identified 68 sequences derived from unannotated regions in the current Drosophila genome version (4.3). Of these, a set of 38 was analysed by polyA+ northern blot hybridization, validating 17 (50%) new exons of low abundance transcripts. For one of these ESTs, we obtained the cDNA encompassing the complete coding sequence of a new serine protease, named SP212. The SP212 gene is part of a serine protease gene cluster located in the chromosome region 88A12-B1. This cluster includes the predicted genes CG9631, CG9649 and CG31326, which were previously identified as up-regulated after immune challenges in genomic-scale microarray analysis. In agreement with the proposal that this locus is co-regulated in response to microorganisms infection, we show here that SP212 is also up-regulated upon injury. Conclusion Using the ORESTES methodology we identified 17 novel exons from low abundance Drosophila transcripts, and through a PCR approach the complete CDS of one of these transcripts was defined. Our results show that the computational identification and manual inspection are not sufficient to annotate a genome in the absence of experimentally derived data.
Resumo:
Abstract Background The molecular phylogenetic relationships and population structure of the species of the Anopheles triannulatus complex: Anopheles triannulatus s.s., Anopheles halophylus and the putative species Anopheles triannulatus C were investigated. Methods The mitochondrial COI gene, the nuclear white gene and rDNA ITS2 of samples that include the known geographic distribution of these taxa were analyzed. Phylogenetic analyses were performed using Bayesian inference, Maximum parsimony and Maximum likelihood approaches. Results Each data set analyzed septely yielded a different topology but none provided evidence for the seption of An. halophylus and An. triannulatus C, consistent with the hypothesis that the two are undergoing incipient speciation. The phylogenetic analyses of the white gene found three main clades, whereas the statistical parsimony network detected only a single metapopulation of Anopheles triannulatus s.l. Seven COI lineages were detected by phylogenetic and network analysis. In contrast, the network, but not the phylogenetic analyses, strongly supported three ITS2 groups. Combined data analyses provided the best resolution of the trees, with two major clades, Amazonian (clade I) and trans-Andean + Amazon Delta (clade II). Clade I consists of multiple subclades: An. halophylus + An. triannulatus C; trans-Andean Venezuela; central Amazonia + central Bolivia; Atlantic coastal lowland; and Amazon delta. Clade II includes three subclades: Panama; cis-Andean Colombia; and cis-Venezuela. The Amazon delta specimens are in both clades, likely indicating local sympatry. Spatial and molecular variance analyses detected nine groups, corroborating some of subclades obtained in the combined data analysis. Conclusion Combination of the three molecular markers provided the best resolution for differentiation within An. triannulatus s.s. and An. halophylus and C. The latest two species seem to be very closely related and the analyses performed were not conclusive regarding species differentiation. Further studies including new molecular markers would be desirable to solve this species status question. Besides, results of the study indicate a trans-Andean origin for An. triannulatus s.l. The potential implications for malaria epidemiology remain to be investigated.
Resumo:
BPAG1-b is the major muscle-specific isoform encoded by the dystonin gene, which expresses various protein isoforms belonging to the plakin protein family with complex, tissue-specific expression profiles. Recent observations in mice with either engineered or spontaneous mutations in the dystonin gene indicate that BPAG1-b serves as a cytolinker important for the establishment and maintenance of the cytoarchitecture and integrity of striated muscle. Here, we studied in detail its distribution in skeletal and cardiac muscles and assessed potential binding partners. BPAG1-b was detectable in vitro and in vivo as a high molecular mass protein in striated and heart muscle cells, co-localizing with the sarcomeric Z-disc protein alpha-actinin-2 and partially with the cytolinker plectin as well as with the intermediate filament protein desmin. Ultrastructurally, like alpha-actinin-2, BPAG1-b was predominantly localized at the Z-discs, adjacent to desmin-containing structures. BPAG1-b was able to form complexes with both plectin and alpha-actinin-2, and its NH(2)-terminus, which contains an actin-binding domain, directly interacted with that of plectin and alpha-actinin. Moreover, the protein level of BPAG1-b was reduced in muscle tissues from plectin-null mutant mice versus wild-type mice. These studies provide new insights into the role of BPAG1-b in the cytoskeletal organization of striated muscle.
Resumo:
The 3 angstrom resolution crystal structure of the Escherichia coli catabolite gene activator protein (CAP) complexed with a 30-base pair DNA sequence shows that the DNA is bent by 900. This bend results almost entirely from two 400 kinks that occur between TG/CA base pairs at positions 5 and 6 on each side of the dyad axis of the complex. DNA sequence discrimination by CAP derives both from sequence-dependent distortion of the DNA helix and from direct hydrogen-bonding interactions between three protein side chains and the exposed edges of three base pairs in the major groove of the DNA. The structure of this transcription factor-DNA complex provides insights into possible mechanisms of transcription activation
Resumo:
The importance of polymorphisms in the dihydropyrimidine dehydrogenase (DPD) gene (DPYD) for the prediction of severe toxicity in 5-fluorouracil (5-FU) based chemotherapy has been controversially debated. As a key enzyme in the catabolism of 5-FU, DPD is the top candidate for pharmacogenetic studies on 5-FU toxicity, since a reduced DPD activity is thought to result in an increased half-life of the drug, and thus, an increased risk of toxicity. Here, we review the current knowledge on well-known and frequently studied DPYD variants such as the c.1905+1G>A splice site variant, as well as the recent discoveries of important functional variation in the noncoding regions of DPYD. We also outline future directions that are needed to further improve the risk assessment of 5-FU toxicity, in particular with respect to metabolic profiling and in the context of different combination therapeutic regimens, in which 5-FU is used today.
Resumo:
The prevalence of deafness is high in cat populations in which the dominant white gene is segregating. The objective of this study was to investigate whether there is a gene that is responsible for deafness as well as for blue eyes and to establish a plausible mode of inheritance. For this purpose, data from an experimental colony with deaf cats were analyzed. The hearing status was determined by acoustically evoked brain stem responses (BAER). Complex segregation analyses were conducted to find out the most probable mode of inheritance using maximum likelihood procedures. The prevalence of deafness and partial hearing in the experimental colony was 67% and 29%, respectively. The results of the bivariate segregation analysis support the hypothesis of a pleiotropic major gene segregating for deafness and blue iris colour. The high heritability coefficients for both traits, 0.55 and 0.75 respectively, indicate that beside the major gene there is an important influence of polygenic effects.
Resumo:
BACKGROUND: Anaplasma phagocytophilum (formerly known as the human granulocytic ehrlichia, Ehrlichia equi and Ehrlichia phagocytophila) is an obligate intracellular organism causing clinical disease in humans and various species of domestic animals. OBJECTIVES: The objectives of this investigation were to sequence and clone the major surface protein 5 (MSP5) of A phagocytophilum and to evaluate the suitability of this antigen in the serologic diagnosis of anaplasmosis in humans and dogs. METHODS: The msp5 gene of A phagocytophilum was sequenced, cloned, and expressed in Escherichia coli. The predicted amino acid sequence homology of the various MSP5/major antigenic protein 2 orthologs was compared among various Anaplasma and Ehrlichia species. Recombinant MSP5 of A phagocytophilum was used in an ELISA to detect antibodies in serum samples from humans and dogs infected with the organism. RESULTS: Serum samples from 104 individuals previously diagnosed with A phagocytophilum infection, as well as samples from clinically healthy humans, were tested. In addition, multiple samples from 4 dogs experimentally infected with 2 different geographic isolates of A phagocytophilum and 5 dogs naturally infected with a Swiss isolate were tested using ELISA. Using this group of immunofluorescent antibody test-positive and immunofluorescent antibody test-negative samples, we found the overall agreement between assays to be >90%. CONCLUSIONS: These results indicate that recombinant MSP5 has potential for use as a diagnostic test antigen to detect infection with A phagocytophilum in both dogs and humans. However, sequence similarities among orthologs of MSP5 in related species of anaplasma and ehrlichia suggest that cross-reactivity among these pathogens is likely if the entire peptide is used as a test antigen.
Resumo:
We propose robust and e±cient tests and estimators for gene-environment/gene-drug interactions in family-based association studies. The methodology is designed for studies in which haplotypes, quantitative pheno- types and complex exposure/treatment variables are analyzed. Using causal inference methodology, we derive family-based association tests and estimators for the genetic main effects and the interactions. The tests and estimators are robust against population admixture and strati¯cation without requiring adjustment for confounding variables. We illustrate the practical relevance of our approach by an application to a COPD study. The data analysis suggests a gene-environment interaction between a SNP in the Serpine gene and smok- ing status/pack years of smoking that reduces the FEV1 volume by about 0.02 liter per pack year of smoking. Simulation studies show that the pro- posed methodology is su±ciently powered for realistic sample sizes and that it provides valid tests and effect size estimators in the presence of admixture and stratification.
Resumo:
Gene duplication is one of the key factors driving genetic innovation, i.e., producing novel genetic variants. Although the contribution of whole-genome and segmental duplications to phenotypic diversity across species is widely appreciated, the phenotypic spectrum and potential pathogenicity of small-scale duplications in individual genomes are less well explored. This review discusses the nature of small-scale duplications and the phenotypes produced by such duplications. Phenotypic variation and disease phenotypes induced by duplications are more diverse and widespread than previously anticipated, and duplications are a major class of disease-related genomic variation. Pathogenic duplications particularly involve dosage-sensitive genes with both similar and dissimilar over- and underexpression phenotypes, and genes encoding proteins with a propensity to aggregate. Phenotypes related to human-specific copy number variation in genes regulating environmental responses and immunity are increasingly recognized. Small genomic duplications containing defense-related genes also contribute to complex common phenotypes.
Resumo:
Bovine papillomavirus type 1 or 2 (BPV-1, BPV-2) are accepted causal factors in equine sarcoid pathogenesis. Whereas viral genomes are consistently found and expressed within lesions, intact virions have never been detected, thus permissiveness of sarcoids for BPV-1 replication remains unclear. To reassess this issue, an immunocapture PCR (IC/PCR) was established using L1-specific antibodies to capture L1-DNA complexes followed by amplification of the viral genome. Following validation of the assay, 13 sarcoid-bearing horses were evaluated by IC/PCR. Samples were derived from 21 tumours, 4 perilesional/intact skin biopsies, and 1 serum. Tissue extracts from sarcoid-free equines served as controls. IC/PCR scored positive in 14/24 (58.3%) specimens obtained from sarcoid-patients, but negative for controls. Quantitative IC/PCR demonstrated <125 immunoprecipitable viral genomes/50 microl extract for the majority of specimens. Moreover, full-length BPV-1 genomes were detected in a complex with L1 proteins. These complexes may correspond to virion precursors or intact virions.
Resumo:
This investigation was based on 23 isolates from several European countries collected over the past 30 years, and included characterization of all isolates. Published data on amplified fragment length polymorphism typing of isolates representing all biovars as well as protein profiles were used to select strains that were then further characterized by polyamine profiling and sequencing of 16S rRNA, infB, rpoB and recN genes. Comparison of 16S rRNA gene sequences revealed a monophyletic group within the avian 16S rRNA group of the Pasteurellaceae, which currently includes the genera Avibacterium, Gallibacterium and Volucribacter. Five monophyletic subgroups related to Gallibacterium anatis were recognized by 16S rRNA, rpoB, infB and recN gene sequence comparisons. Whole-genome similarity between strains of the five subgroups and the type strain of G. anatis calculated from recN sequences allowed us to classify them within the genus Gallibacterium. In addition, phenotypic data including biochemical traits, protein profiling and polyamine patterns clearly indicated that these taxa are related. Major phenotypic diversity was observed for 16S rRNA gene sequence groups. Furthermore, comparison of whole-genome similarities, phenotypic data and published data on amplified fragment length polymorphism and protein profiling revealed that each of the five groups present unique properties that allow the proposal of three novel species of Gallibacterium, for which we propose the names Gallibacterium melopsittaci sp. nov. (type strain F450(T) =CCUG 36331(T) =CCM 7538(T)), Gallibacterium trehalosifermentans sp. nov. (type strain 52/S3/90(T) =CCUG 55631(T) =CCM 7539(T)) and Gallibacterium salpingitidis sp. nov. (type strain F150(T) =CCUG 15564(T) =CCUG 36325(T) =NCTC 11414(T)), a novel genomospecies 3 of Gallibacterium and an unnamed taxon (group V). An emended description of the genus Gallibacterium is also presented.