920 resultados para low temperature reaction


Relevância:

80.00% 80.00%

Publicador:

Resumo:

ZnO nanorods grown by both high temperature vapour phase transport and low temperature chemical bath deposition are very promising sources for UV third harmonic generation. Material grown by both methods show comparable efficiencies, in both cases an order of magnitude higher than surface third harmonic generation at the quartz-air interface of a bare quartz substrate. This result is in stark contrast to the linear optical properties of ZnO nanorods grown by these two methods, which show vastly different PL efficiencies. The third harmonic generated signal is analysed using intensity dependent measurements and interferometric frequency resolved optical gating, allowing extraction of the laser pulse parameters. The comparable levels of efficiency of ZnO grown by these very different methods as sources for third harmonic UV generation provides a broad suite of possible growth methods to suit various substrates, coverage and scalability requirements. Potential application areas range from interferometric frequency resolved optical gating characterization of few cycle fs pulses to single cell UV irradiation for biophysical studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The possible use of polyethylene naphthalate as substrate for low-temperature deposited solar cells has been studied in this paper. The transparency of this polymer makes it a candidate to be used in both substrate and superstrate configurations. ZnO:Al has been deposited at room temperature on top of PEN. The resulting structure PEN/ZnO:Al presented good optical and electrical properties. PEN has been successfully textured (nanometer and micrometer random roughness) using hot-embossing lithography. Reflector structures have been built depositing Ag and ZnO:Al on top of the stamped polymer. The deposition of these layers did not affect the final roughness of the whole. The reflector structure has been morphologically and optically analysed to verify its suitability to be used in solar cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polysilicon thin film transistors (TFT) are of great interest in the field of large area microelectronics, especially because of their application as active elements in flat panel displays. Different deposition techniques are in tough competition with the objective to obtain device-quality polysilicon thin films at low temperature. In this paper we present the preliminary results obtained with the fabrication of TFT deposited by hot-wire chemical vapor deposition (HWCVD). Some results concerned with the structural characterization of the material and electrical performance of the device are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogenated microcrystalline silicon films obtained at low temperature (150-280°C) by hot wire chemical vapour deposition at two different process pressures were measured by Raman spectroscopy, X-ray diffraction (XRD) spectroscopy and photothermal deflection spectroscopy (PDS). A crystalline fraction >90% with a subgap optical absortion 10 cm -1 at 0.8 eV were obtained in films deposited at growth rates >0.8 nm/s. These films were incorporated in n-channel thin film transistors and their electrical properties were measured. The saturation mobility was 0.72 ± 0.05 cm 2/ V s and the threshold voltage around 0.2 eV. The dependence of their conductance activation energies on gate voltages were related to the properties of the material.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Undoped hydrogenated microcrystalline silicon was obtained by hot-wire chemical vapour deposition at different silane-to-hydrogen ratios and low temperature (<300 °C). As well as technological aspects of the deposition process, we report structural, optical and electrical characterizations of the samples that were used as the active layer for preliminary p-i-n solar cells. Raman spectroscopy indicates that changing the hydrogen dilution can vary the crystalline fraction. From electrical measurements an unwanted n-type character is deduced for this undoped material. This effect could be due to a contaminant, probably oxygen, which is also observed in capacitance-voltage measurements on Schottky structures. The negative effect of contaminants on the device was dramatic and a compensated p-i-n structure was also deposited to enhance the cell performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article we describe the construction of two cooling systems with an immersion probe which will allow one to work at temperatures of either -40ºC or -60ºC. The two systems were constructed with readily available components and have been used daily for the last year in our laboratory to carry out reactions at low temperature or to cool down traps of vacuum pumps, reducing our need of dry-ice or liquid nitrogen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of sol-gel materials to develop new biosensors has received great attention due to its characteristics and versatility of sol-gel process. An overview is presented of the state-of-the-art of electrochemical biosensors employing sol-gel materials. Low-temperature, porous sol-gel ceramics represent a new class for the immobilization of biomolecules. The rational design of sol-gel sensing materials, based on the judicious choice of the starting alkoxide, encapsulated reagents, and preparation conditions, allows tailoring of material properties in a wide range, and offers great potential for the development of electrochemical biosensors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Herein, we have investigated the solubilization of decane into a novel nonionic gemini surfactant, myristoyl-end capped Jeffamine, synthesized from a polyoxyalkyleneamine (ED900). Starting from this system, porous silica materials have been prepared. Performing the hydrothermal treatment at low temperature, a slight increase of the mesopore diameter is observed in the presence of decane. Increasing the temperature of the hydrothermal treatment, no swelling effect of decane is detected. By contrast, the pore diameter decreases but better mesopore homogeneity and a larger wall thickness are obtained. At high decane concentration the new myristoyl-end capped Jeffamine/decane/water system forms oil-in-water emulsions, which are used as template for the formation of hierarchical porous silica materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fuel cells are attracting much interest as efficient and clean energy conversion devices. The main components of low temperature fuel cells are the electrocatalysts used to promote the anodic and cathodic reactions, which are based on platinum and platinum alloys. These electrocatalysts are normally prepared in the form of metal nanoparticles supported on a conductive material, usually high surface area carbon, to improve catalyst utilization and reduce cost. This work presents and comments some methods used presently to produce these electrocatalysts. The performances of the produced electrocatalysts are compared to that of state-of-the-art commercial E-TEK electrocatalysts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Activation energy (Ea) is a parameter that can be applied to make predictions about the quality of oils to be used in an ICO engine. In this study, Ea was determined by thermogravimetry following two different procedures: ASTM E 1641 and Model-free kinetics. The energies were calculated in the low temperature oxidation (LTO) region for three Brazilian fuel oils (denominated A, B and C) and the results were equal using both methods: 43 kJ mol-1 (alpha=0.1 to 0.9) for oil A, 48 kJ mol-1 (alpha=0.1 to 0.5) and 65 kJ mol-1 (alpha=0.5 to 0.9) for oil B, and 58 kJ mol-1 (alpha=0.1 to 0.5) and 65 kJ mol-1 (alpha=0.5 to 0.9) for oil C. It was concluded that, among the oils studied, sample A was potentially the best option concerning the behavior in the LTO region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The properties of water can have a strong dependence on the confinement. Here, we consider a water monolayer nanoconfined between hydrophobic parallel walls under conditions that prevent its crystallization. We investigate, by simulations of a many-body coarse-grained water model, how the properties of the liquid are affected by the confinement. We show, by studying the response functions and the correlation length and by performing finite-size scaling of the appropriate order parameter, that at low temperature the monolayer undergoes a liquid-liquid phase transition ending in a critical point in the universality class of the two-dimensional (2D) Ising model. Surprisingly, by reducing the linear size L of the walls, keeping the walls separation h constant, we find a 2D-3D crossover for the universality class of the liquid-liquid critical point for L/h=~50, i.e. for a monolayer thickness that is small compared to its extension. This result is drastically different from what is reported for simple liquids, where the crossover occurs for , and is consistent with experimental results and atomistic simulations. We shed light on these findings showing that they are a consequence of the strong cooperativity and the low coordination number of the hydrogen bond network that characterizes water.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a study on the determination of the optimal experimental conditions for processing spent commercial zeolites in order to recover lanthanide elements and eventually other elements. The process is based on the fusion of the sample with potassium hydrogenosulfate (KHSO4). Three experimental parameters were studied: temperature, reaction time and catalyst/flux mass ratio. After fusion the solid was dissolved in water and the amount of insoluble matter was used to determine the efficiency of the process. The optimized experimental parameters depend on the composition of the sample processed. Under such conditions the insoluble residue corresponds to SiO2. Lanthanide elements and aluminum present in solution were isolated by conventional precipitation techniques; the yields were at least 75 wt%. The final generated wastes correspond to neutral colorless solutions containing alkali chlorides/sulfates and solids that can be disposed of in industrial dumps.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The liquid-liquid extraction with the low temperature partition technique was developed for the analysis of four pyrethroids in water by CG. Using a factorial design the extraction technique was optimised evaluating the effect of the variables ionic strength, contact time and proportion between sample and solvent volumes. The validation parameters sensitivity, precision, accuracy and detection and quantification limits were evaluated. The LOD and LOQ of the method varied from 1.1 to 3.2 µg L-1 and 2.7 to 9.5 µg L-1, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study proposes the low temperature pyrolysis as an alternative conversion process for residual biomass and for obtaining gaseous, liquid and solid chemical feedstocks. Using a bench electrical pyrolysis oven, four product fractions from eucalyptus sawdust were obtained: a gaseous one, two liquid (aqueous and oily), and a solid residue (char). These products were characterized by different analytical methods. The liquid fractions showed themselves as potential sources for input chemicals. The residual char revealed appreciable adsorption capability. The process demonstrated good efficiency, generating at least two fractions of great industrial interest: bio oil and char.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work was to optimize the derivatization reaction for determining deoxynivalenol (DON) by gas chromatography employing an experimental planning procedure. The factors were: temperature, reaction time, catalyst and trifluoroacetic anhydride concentration. The relative peak areas were used to evaluated the effects. The best conditions for DON derivatization were 200 µL TFAA and 18 mg sodium bicarbonate for 6 min at 74 ºC for 7 to 21 µg of DON. Under these conditions, the detection limit was 1.4 µg of DON.