996 resultados para information avoidance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter presents the preliminary findings of a qualitative study exploring people’s information experiences during the 2012 Queensland State election in Australia. Six residents of South East Queensland who were eligible to vote in the state election participated in a semi-structured interview. The interviews revealed five themes that depict participants’ information experience during the election: information sources, information flow, personal politics, party politics and sense making. Together these themes represent what is experienced as information, how information is experienced, as well as contextual aspects that were unique to voting in an election. The study outlined here is one in an emerging area of enquiry that has explored information experience as a research object. This study has revealed that people’s information experiences are rich, complex and dynamic, and that information experience as a construct of scholarly inquiry provides deep insights into the ways in which people relate to their information worlds. More studies exploring information experience within different contexts are needed to help develop our theoretical understanding of this important and emerging construct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is an investigation of the media's representation of children and ICT. The study draws on moral panic theory and Queensland newspaper media, to identify the impact of newspaper reporting on the public's perceptions of young people and ICT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis considers how an information privacy system can and should develop in Libya. Currently, no information privacy system exists in Libya to protect individuals when their data is processed. This research reviews the main features of privacy law in several key jurisdictions in light of Libya's social, cultural, and economic context. The thesis identifies the basic principles that a Libyan privacy law must consider, including issues of scope, exceptions, principles, remedies, penalties, and the establishment of a legitimate data protection authority. This thesis concludes that Libya should adopt a strong information privacy law framework and highlights some of the considerations that will be relevant for the Libyan legislature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Every motorised jurisdiction mandates legal driving behaviour which facilitates driver mobility and road user safety through explicit road rules that are enforced by regulatory authorities such as the Police. In road safety, traffic law enforcement has been very successfully applied to modify road user behaviour, and increasingly technology is fundamental in detecting illegal road user behaviour. Furthermore, there is also sound evidence that highly visible and/or intensive enforcement programs achieve long-term deterrent effects. To illustrate, in Australia random breath testing has considerably reduced the incidence and prevalence of driving whilst under the influence of alcohol. There is, however, evidence that many road rules continue to be broken, including speeding and using a mobile phone whilst driving, and there are many instances where drivers are not detected or sufficiently sanctioned for these transgressions. Furthermore, there is a growing body of evidence suggesting that experiences of punishment avoidance – that is, successful attempts at avoiding punishment such as drivers talking themselves out of a ticket, or changing driving routes to evade detection –are associated with and predictive of the extent of illegal driving behaviour and future illegal driving intentions. Therefore there is a need to better understand the phenomenon of punishment avoidance to enhance our traffic law enforcement procedures and therefore safety of all road users. This chapter begins with a review of the young driver road safety problem, followed by an examination of contemporary deterrence theory to enhance our understanding of both the experiences and implications of punishment avoidance in the road environment. It is noteworthy that in situations where detection and punishment remain relatively rare, such as on extensive road networks, the research evidence suggests that experiences of punishment avoidance may have a stronger influence upon risky driving behaviour than experiences of punishment. Finally, data from a case study examining the risky behaviour of young drivers will be presented, and the implications for ‘getting away with it’ will be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topic modelling, such as Latent Dirichlet Allocation (LDA), was proposed to generate statistical models to represent multiple topics in a collection of documents, which has been widely utilized in the fields of machine learning and information retrieval, etc. But its effectiveness in information filtering is rarely known. Patterns are always thought to be more representative than single terms for representing documents. In this paper, a novel information filtering model, Pattern-based Topic Model(PBTM) , is proposed to represent the text documents not only using the topic distributions at general level but also using semantic pattern representations at detailed specific level, both of which contribute to the accurate document representation and document relevance ranking. Extensive experiments are conducted to evaluate the effectiveness of PBTM by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model achieves outstanding performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need for native Information Systems (IS) theories has been discussed by several prominent scholars. Contributing to their conjectural discussion, this research moves towards theorizing IS success as a native theory for the discipline. Despite being one of the most cited scholarly works to-date, IS success of DeLone and McLean (1992) has been criticized by some for lacking focus on the theoretical approach. Following theory development frameworks, this study improves the theoretical standing of IS success by minimizing interaction and inconsistency. The empirical investigation of theorizing IS success includes 1396 respondents, gathered through six surveys and a case study. The respondents represent 70 organisations, multiple Information Systems, and both private and public sector organizations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Control Theory has provided a useful theoretical foundation for Information Systems development outsourcing (ISD-outsourcing) to examine the co-ordination between the client and the vendor. Recent research identified two control mechanisms: structural (structure of the control mode) and process (the process through which the control mode is enacted). Yet, the Control Theory research to-date does not describe the ways in which the two control mechanisms can be combined to ensure project success. Grounded in case study data of eight ISD-outsourcing projects, we derive three ‘control configurations’; i) aligned, ii) negotiated, and 3) self-managed, which describe the combinative patterns of structural and process control mechanisms within and across control modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explored the creation, dissemination and exchange of electronic word of mouth, in the form of product reviews and ratings of digital technology products. Based on 43 in-depth interviews and 500 responses to an online survey, it reveals a new communication model describing consumers' info-active and info-passive information search styles. The study delivers an in-depth understanding of consumers' attitudes towards current advertising tools and user-generated content, and points to new marketing techniques emerging in the online environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most recommender systems attempt to use collaborative filtering, content-based filtering or hybrid approach to recommend items to new users. Collaborative filtering recommends items to new users based on their similar neighbours, and content-based filtering approach tries to recommend items that are similar to new users' profiles. The fundamental issues include how to profile new users, and how to deal with the over-specialization in content-based recommender systems. Indeed, the terms used to describe items can be formed as a concept hierarchy. Therefore, we aim to describe user profiles or information needs by using concepts vectors. This paper presents a new method to acquire user information needs, which allows new users to describe their preferences on a concept hierarchy rather than rating items. It also develops a new ranking function to recommend items to new users based on their information needs. The proposed approach is evaluated on Amazon book datasets. The experimental results demonstrate that the proposed approach can largely improve the effectiveness of recommender systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Big Data presents many challenges related to volume, whether one is interested in studying past datasets or, even more problematically, attempting to work with live streams of data. The most obvious challenge, in a ‘noisy’ environment such as contemporary social media, is to collect the pertinent information; be that information for a specific study, tweets which can inform emergency services or other responders to an ongoing crisis, or give an advantage to those involved in prediction markets. Often, such a process is iterative, with keywords and hashtags changing with the passage of time, and both collection and analytic methodologies need to be continually adapted to respond to this changing information. While many of the data sets collected and analyzed are preformed, that is they are built around a particular keyword, hashtag, or set of authors, they still contain a large volume of information, much of which is unnecessary for the current purpose and/or potentially useful for future projects. Accordingly, this panel considers methods for separating and combining data to optimize big data research and report findings to stakeholders. The first paper considers possible coding mechanisms for incoming tweets during a crisis, taking a large stream of incoming tweets and selecting which of those need to be immediately placed in front of responders, for manual filtering and possible action. The paper suggests two solutions for this, content analysis and user profiling. In the former case, aspects of the tweet are assigned a score to assess its likely relationship to the topic at hand, and the urgency of the information, whilst the latter attempts to identify those users who are either serving as amplifiers of information or are known as an authoritative source. Through these techniques, the information contained in a large dataset could be filtered down to match the expected capacity of emergency responders, and knowledge as to the core keywords or hashtags relating to the current event is constantly refined for future data collection. The second paper is also concerned with identifying significant tweets, but in this case tweets relevant to particular prediction market; tennis betting. As increasing numbers of professional sports men and women create Twitter accounts to communicate with their fans, information is being shared regarding injuries, form and emotions which have the potential to impact on future results. As has already been demonstrated with leading US sports, such information is extremely valuable. Tennis, as with American Football (NFL) and Baseball (MLB) has paid subscription services which manually filter incoming news sources, including tweets, for information valuable to gamblers, gambling operators, and fantasy sports players. However, whilst such services are still niche operations, much of the value of information is lost by the time it reaches one of these services. The paper thus considers how information could be filtered from twitter user lists and hash tag or keyword monitoring, assessing the value of the source, information, and the prediction markets to which it may relate. The third paper examines methods for collecting Twitter data and following changes in an ongoing, dynamic social movement, such as the Occupy Wall Street movement. It involves the development of technical infrastructure to collect and make the tweets available for exploration and analysis. A strategy to respond to changes in the social movement is also required or the resulting tweets will only reflect the discussions and strategies the movement used at the time the keyword list is created — in a way, keyword creation is part strategy and part art. In this paper we describe strategies for the creation of a social media archive, specifically tweets related to the Occupy Wall Street movement, and methods for continuing to adapt data collection strategies as the movement’s presence in Twitter changes over time. We also discuss the opportunities and methods to extract data smaller slices of data from an archive of social media data to support a multitude of research projects in multiple fields of study. The common theme amongst these papers is that of constructing a data set, filtering it for a specific purpose, and then using the resulting information to aid in future data collection. The intention is that through the papers presented, and subsequent discussion, the panel will inform the wider research community not only on the objectives and limitations of data collection, live analytics, and filtering, but also on current and in-development methodologies that could be adopted by those working with such datasets, and how such approaches could be customized depending on the project stakeholders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we focus specifically on explaining variation in core human values, and suggest that individual differences in values can be partially explained by personality traits and the perceived ability to manage emotions in the self and others (i.e. trait emotional intelligence). A sample of 209 university students was used to test hypotheses regarding several proposed direct and indirect relationships between personality traits, trait emotional intelligence and values. Consistent with the hypotheses, Harm Avoidance and Novelty Seeking were found to directly predict Hedonism, Conformity, and Stimulation. Harm Avoidance was also found to indirectly predict these values through the mediating effects of key subscales of trait emotional intelligence. Novelty Seeking was not found to be an indirect predictor of values. Results have implications for our understanding of the relationship between personality, trait emotional intelligence and values, and suggest a common basis in terms of approach and avoidance pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disagreement within the global science community about the certainty and causes of climate change has led the general public to question what to believe and who to trust on matters related to this issue. This paper reports on qualitative research undertaken with Australian residents from two rural areas to explore their perceptions of climate change and trust in information providers. While overall, residents tended to agree that climate change is a reality, perceptions varied in terms of its causes and how best to address it. Politicians, government, and the media were described as untrustworthy sources of information about climate change, with independent scientists being the most trusted. The vested interests of information providers appeared to be a key reason for their distrust. The findings highlight the importance of improved transparency and consultation with the public when communicating information about climate change and related policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall aim of this research project was to provide a broader range of value propositions (beyond upfront traditional construction costs) that could transform both the demand side and supply side of the housing industry. The project involved gathering information about how building information is created, used and communicated and classifying building information, leading to the formation of an Information Flow Chart and Stakeholder Relationship Map. These were then tested via broad housing industry focus groups and surveys. The project revealed four key relationships that appear to operate in isolation to the whole housing sector and may have significant impact on the sustainability outcomes and life cycle costs of dwellings over their life cycle. It also found that although a lot of information about individual dwellings does already exist, this information is not coordinated or inventoried in any systematic manner and that national building information files of building passports would present value to a wide range of stakeholders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many mature term-based or pattern-based approaches have been used in the field of information filtering to generate users’ information needs from a collection of documents. A fundamental assumption for these approaches is that the documents in the collection are all about one topic. However, in reality users’ interests can be diverse and the documents in the collection often involve multiple topics. Topic modelling, such as Latent Dirichlet Allocation (LDA), was proposed to generate statistical models to represent multiple topics in a collection of documents, and this has been widely utilized in the fields of machine learning and information retrieval, etc. But its effectiveness in information filtering has not been so well explored. Patterns are always thought to be more discriminative than single terms for describing documents. However, the enormous amount of discovered patterns hinder them from being effectively and efficiently used in real applications, therefore, selection of the most discriminative and representative patterns from the huge amount of discovered patterns becomes crucial. To deal with the above mentioned limitations and problems, in this paper, a novel information filtering model, Maximum matched Pattern-based Topic Model (MPBTM), is proposed. The main distinctive features of the proposed model include: (1) user information needs are generated in terms of multiple topics; (2) each topic is represented by patterns; (3) patterns are generated from topic models and are organized in terms of their statistical and taxonomic features, and; (4) the most discriminative and representative patterns, called Maximum Matched Patterns, are proposed to estimate the document relevance to the user’s information needs in order to filter out irrelevant documents. Extensive experiments are conducted to evaluate the effectiveness of the proposed model by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model significantly outperforms both state-of-the-art term-based models and pattern-based models

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering the wide spectrum of situations that it may encounter, a robot navigating autonomously in outdoor environments needs to be endowed with several operating modes, for robustness and efficiency reasons. Indeed, the terrain it has to traverse may be composed of flat or rough areas, low cohesive soils such as sand dunes, concrete road etc. . .Traversing these various kinds of environment calls for different navigation and/or locomotion functionalities, especially if the robot is endowed with different locomotion abilities, such as the robots WorkPartner, Hylos [4], Nomad or the Marsokhod rovers. Numerous rover navigation techniques have been proposed, each of them being suited to a particular environment context (e.g. path following, obstacle avoidance in more or less cluttered environments, rough terrain traverses...). However, seldom contributions in the literature tackle the problem of selecting autonomously the most suited mode [3]. Most of the existing work is indeed devoted to the passive analysis of a single navigation mode, as in [2]. Fault detection is of course essential: one can imagine that a proper monitoring of the Mars Exploration Rover Opportunity could have avoided the rover to be stuck during several weeks in a dune, by detecting non-nominal behavior of some parameters. But the ability to recover the anticipated problem by switching to a better suited navigation mode would bring higher autonomy abilities, and therefore a better overall efficiency. We propose here a probabilistic framework to achieve this, which fuses environment related and robot related information in order to actively control the rover operations.