873 resultados para glutathione
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ethanol-induced oxidative damage is commonly associated with the generation of reactive oxygen molecules, leading to oxidative stress. Considering that antioxidant activity is an important mechanism of action involved in cytoprotection, the aim of this work was to evaluate the antioxidant properties of the alkaloid indigo (1) (2 mg/kg, p. o.), obtained from the leaves of Indigofera truxillensis Kunth (Fabaceae), on rat gastric mucosa submitted to ethanol-induced (100%, 1 mL, p.o.) gastric ulcer. Enzymatic assays and DNA fragmentation analysis were performed. When ethanol was administered to the control group, the sulfhydryl content (SH) and the glutathione peroxidase (GPx) activity decreased by 41% and 50%, respectively; in contrast, superoxide dismutase (SOD) and glutathione reductase (GR) activities increased by 56% and 67%, respectively. Additionally, myeloperoxidase (MPO) activity, a marker for free radical generation caused by polymorphonuclear neutrophil (PMN) tissue infiltration, also increased 4.5-fold after ethanol treatment. Rat gastric mucosa exposed to ethanol showed DNA fragmentation. Indigo alkaloid pretreatment protected rats from ethanol-induced gastric lesions. This effect was determined by the ulcerative lesion area (ULA), indicating an inhibition of around 80% at 2 mg/kg. This alkaloid also diminished GPx activity, which was higher than that observed with ethanol alone. However, this effect was counterbalanced by increased GR activity. Indigo was unable to restore alterations in SOD activity promoted by ethanol. After indigo pretreatment, SH levels and MPO activity remained normal and gastric mucosa DNA damage caused by ethanol was also partially prevented by indigo. These results suggest that the gastroprotective mechanisms of indigo include non-enzymatic antioxidant effects and the inhibition of PMN infiltration which, in combination, partially protect the gastric mucosa against ethanol-induced DNA damage.
Oxidative stress biomarkers and aggressive behavior in fish exposed to aquatic cadmium contamination
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Replicative life span in Saccharomyces cerevisiae is increased by glucose (G1c) limitation [ calorie restriction (CR)] and by augmented NAD(+). Increased survival promoted by CR was attributed previously to the NAD(+)-dependent histone deacetylase activity of sirtuin family protein Sir2p but not to changes in redox state. Here we show that strains defective in NAD(+) synthesis and salvage pathways (pnc1 Delta, npt1 Delta, and bna6 Delta) exhibit decreased oxygen consumption and increased mitochondrial H2O2 release, reversed over time by CR. These null mutant strains also present decreased chronological longevity in a manner rescued by CR. Furthermore, we observed that changes in mitochondrial H2O2 release alter cellular redox state, as attested by measurements of total, oxidized, and reduced glutathione. Surprisingly, our results indicate that matrix-soluble dihydrolipoyl-dehydrogenases are an important source of CR-preventable mitochondrial reactive oxygen species (ROS). Indeed, deletion of the LPD1 gene prevented oxidative stress in npt1 Delta and bna6 Delta mutants. Furthermore, pyruvate and alpha-ketoglutarate, substrates for dihydrolipoyl dehydrogenase-containing enzymes, promoted pronounced reactive oxygen release in permeabilized wild-type mitochondria. Altogether, these results substantiate the concept that mitochondrial ROS can be limited by caloric restriction and play an important role in S. cerevisiae senescence. Furthermore, these findings uncover dihydrolipoyl dehydrogenase as an important and novel source of ROS leading to life span limitation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The Glutatione-S-transferases (GSTs) comprise a family of enzymes closely associated with the cell detoxification of xenobiotics. GSTs exist as homo- or heterodimers and have been grouped into at least seven distinct classes. The main function of GSTs is to catalyze the conjugation of reduced glutathione (GSH) to an electrophilic site of a broad range of potentially toxic and carcinogenic compounds, thereby making such compounds less dangerous and enabling their ready-excretion. Placental GST, known as GST-P 7-7, is the main isoform found in normal placental tissue and comprises 67% of the total GST concentration in this tissue. During development, GST-P 7-7 decreases in concentration and is absent in adult tissues. Interestingly, GST-P 7-7 expression has been detected in adult tissues after exposure to carcinogenic agents in several experimental test systems, being considered a reliable biomarker of exposure and susceptibility in early phases of carcinogenesis. In this article, we review a series of studies involving GST-P 7-7 expression as a suitable tool for understanding cancer pathogenesis, especially cancer risk.
Resumo:
Background: A nutrition experiment was utilized to investigate the effects of two levels of dietary copper (Cu) supplementation on lipid profile and antioxidant defenses in serum of rats. Methods: Male Wistar rats (180-200 g; n = 10) were divided into three groups: control group (A), fed a basal diet with 6 mu g Cu/g, and rats fed a basal diet with Cu (CuSO4) supplementation from aqueous solutions, for 4 weeks at the final concentrations of 2 mg Cu/rat (B) and 3 mg Cu/rat (C). Results: No significant changes were observed in final body weight, body weight gain, food consumption, total serum protein and high-density lipoprotein. Cu supplementation reduced the triacylglycerol (TG), total cholesterol and low-density lipoprotein (LDL-C). The LDL-C/TG ratio and total antioxidant substances (TAS) were higher in (B) and (C) groups than in (A) group. There was a positive correlation between Cu supplementation and ceruloplasmin levels. The markers of oxidative stress, lipid hydroperoxide and lipoperoxide were decreased with Cu supplementation. No alterations were observed in superoxide dismutase, indicating saturation of Cu enzyme site. The glutathione peroxidase activities (GSH-Px) were increased in both Cu-supplemented groups. Considering that a copper-selenium interaction can affect mineral availability of both elements, the effects of Cu on TAS and GSH-Px activities were associated with increased selenium disposal. Conclusions: Dietary Cu supplementation had beneficial effects on lipid profile by improving endogenous antioxidant defenses and decreasing the oxidative stress in vivo. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
Water contaminants have a high potential risk for the health of populations. Protection from toxic effects of environmental water pollutants primarily involves considering the mechanism of low level toxicity and likely biological effects in organisms who live in these polluted waters. The biomarkers assessment of oxidative stress and metabolic alterations to cadmium exposure were evaluated in Nile tilapia, Oreochromis niloticus. The fish were exposed to 0.35, 0.75, 1.5, and 3.0 mg/l concentrations of Cd2+ (CdCl2) in water for 60 days. Fish that survived cadmium exposure showed a metabolic shift and a compensatory development for maintenance of the body weight gain. We observed a decreased glycogen content and decreased glucose uptake in white muscle. Lactate dehydrogenase (LDH) and creatine phosphokinase (CK) activities were also decreased, indicating that the glycolytic capacity was decreased in this tissue. No alterations were observed in total protein content in white muscle due to cadmium exposure suggesting a metabolic shift of carbohydrate metabolism to maintenance of the muscle protein reserve. There was an increase in glucose uptake, CK increased activity, and a clear increase of LDH activity in red muscle of fish with cadmium exposure. Since no alterations were observed in lipoperoxide concentration, while antioxidant enzymes glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were changed in the liver and the red and white muscle of fish with cadmium exposure, we can conclude that oxygen free radicals are produced as a mediator of cadmium toxicity. Resistance development is related with increased activities of antioxidant enzymes, which were important in the protection against cadmium damage, inhibiting lipoperoxide formation. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
This study examined whether sucrose-rich diet (SRD)-induced hyperglycaemia, dyslipidemia and oxidative stress may be inhibited by N-acetylcysteine (C5H9-NO3S), an organosulfur from Allium plants. Male Wistar 40 rats were divided into four groups (n = 10): (C) given standard chow and water; (N) receiving standard chow and 2 mg/l N-acetylcysteine in its drinking water; (SRD) given standard chow and 30% sucrose in its drinking water; and (SRD-N) receiving standard chow, 30% sucrose and N-acetylcysteine in its drinking water. After 30 days of treatment, SRD rats had obesity with increased abdominal circumference, hyperglycaemia, by dyslipidemia and hepatic triacylglycerol accumulation. These adverse effects were associated with oxidative stress and depressed lipid degradation in hepatic tissue. The SRD adverse effects were not observed in SDR-N rats. N-Acetylcysteine reduced the oxidative stress, enhancing glutathione-peroxidase activity, and normalizing lipid hydroperoxyde, reduced glutathione and superoxide dismutase in hepatic tissue of SRD-N rats. The beta-hydroxyacyl coenzyme-A dehydrogenase and citrate-synthase activities were increased in SRD-N rats, indicating enhanced lipid degradation in hepatic tissue as compared to SRD. SRD-N rats had reduced serum oxidative stress and diminished glucose, triacylglycerol, very-low-density lipoprotein (VLDL), oxidized low-density lipoprotein (alpha-LDL) and cholesterol/highdensity lipoprotein (HDL) ratio in relation to SRD. In conclusion, NAC offers promising therapeutic values in prevention of dyslipidemic profile and alleviation of hyperglycaemia in high-sucrose intake condition by improving antioxidant defences. N-Acetylcysteine had also effects preventing metabolic shifting in hepatic tissue, thus enhancing fat degradation and reducing body weight gain in conditions of excess sucrose intake. The application of this agent in food system via exogenous addition may be feasible and beneficial for antioxidant protection. (c) 2006 Elsevier B.V All rights reserved.