967 resultados para flame soot
Resumo:
An important first step in spray combustion simulation is an accurate determination of the fuel properties which affects the modelling of spray formation and reaction. In a practical combustion simulation, the implementation of a multicomponent model is important in capturing the relative volatility of different fuel components. A Discrete Multicomponent (DM) model is deemed to be an appropriate candidate to model a composite fuel like biodiesel which consists of four components of fatty acid methyl esters (FAME). In this paper, the DM model is compared with the traditional Continuous Thermodynamics (CTM) model for both diesel and biodiesel. The CTM model is formulated based on mixing rules that incorporate the physical and thermophysical properties of pure components into a single continuous surrogate for the composite fuel. The models are implemented within the open-source CFD code OpenFOAM, and a semi-quantitative comparison is made between the predicted spray-combustion characteristics and optical measurements of a swirl-stabilised flame of diesel and biodiesel. The DM model performs better than the CTM model in predicting a higher magnitude of heat release rate in the top flame brush region of the biodiesel flame compared to that of the diesel flame. Using both the DM and CTM models, the simulation successfully reproduces the droplet size, volume flux, and droplet density profiles of diesel and biodiesel. The DM model predicts a longer spray penetration length for biodiesel compared to that of diesel, as seen in the experimental data. Also, the DM model reproduces a segregated biodiesel fuel vapour field and spray in which the most abundant FAME component has the longest vapour penetration. In the biodiesel flame, the relative abundance of each fuel component is found to dominate over the relative volatility in terms of the vapour species distribution and vice versa in the liquid species distribution. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
A High Temperature Condensation Particle Counter (HT-CPC) is described that operates at an elevated temperature of up to ca. 300. °C such that volatile particles from typical combustion sources are not counted. The HT-CPC is functionally identical to a conventional CPC, the main challenge being to find suitable non-hazardous working fluids, with good stability, and an appropriate vapour pressure. Some key design features are described, and results of modelling which predict the HT-CPC counting efficiency. Experimental results are presented for several candidate fluids when the HT-CPC was challenged with ambient, NaCl and diesel soot particles, and the results show good agreement with modelled predictions, and confirm that counting of particles of diameters down to at least 10. nm was achievable. Possible applications are presented, including measurement of particles from a diesel car engine and comparison with a near PMP system. © 2014 Elsevier Ltd.
Resumo:
The statistical behaviours of the instantaneous scalar dissipation rate Nc of reaction progress variable c in turbulent premixed flames have been analysed based on three-dimensional direct numerical simulation data of freely propagating statistically planar flame and V-flame configurations with different turbulent Reynolds number Ret. The statistical behaviours of N c and different terms of its transport equation for planar and V-flames are found to be qualitatively similar. The mean contribution of the density-variation term T1 is positive, whereas the molecular dissipation term (-D2) acts as a leading order sink. The mean contribution of the strain rate term T2 is predominantly negative for the cases considered here. The mean reaction rate contribution T3 is positive (negative) towards the unburned (burned) gas side of the flame, whereas the mean contribution of the diffusivity gradient term (D) assumes negative (positive) values towards the unburned (burned) gas side. The local statistical behaviours of Nc, T1, T2, T 3, (-D2), and f(D) have been analysed in terms of their marginal probability density functions (pdfs) and their joint pdfs with local tangential strain rate aT and curvature km. Detailed physical explanations have been provided for the observed behaviour. © 2014 Y. Gao et al.
Resumo:
This article considers constant-pressure autoignition and freely propagating premixed flames of cold methane/air mixtures mixed with equilibrium hot products at high enough dilution levels to burn within the moderate to intense low oxygen dilution (MILD) combustion regime. The analysis is meant to provide further insight on MILD regime boundaries and to identify the effect of hot products speciation. As the mass fraction of hot products in the reactants mixture increases, autoignition occurs earlier. Species profiles show that the products/reactants mixture approximately equilibrates to a new state over a quick transient well before the main autoignition event, but as dilution becomes very high, this equilibration transient becomes more prominent and eventually merges with the primary ignition event. The dilution level at which these two reactive zones merge corresponds well with that marking the transition into the MILD regime, as defined according to conventional criteria. Similarly, premixed flame simulations at high dilutions show evidence of significant reactions involving intermediate species prior to the flame front. Since the premixed flame governing equations system demands that the species and temperature gradients be zero at the "cold" boundary, flame speed cannot be calculated above a certain dilution level. Up to this point, which again agrees reasonably well with the transition into the MILD regime according to convention, the laminar burning velocity was found to increase with hot product dilution while flame thickness remained largely unchanged. Some comments on the MILD combustion regime boundary definition for gas turbine applications are included. Copyright © Taylor & Francis Group, LLC.
Resumo:
This study focuses on the modelling of turbulent lifted jet flames using flamelets and a presumed Probability Density Function (PDF) approach with interest in both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes of the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for a turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction Z and progress variable c, including their statistical correlation, are obtained using a copula method, which is also validated using the DNS data. The statistically independent PDFs are found to be generally inadequate to represent the joint PDFs from the DNS data. The effects of Z-c correlation and the contribution from the non-premixed combustion mode on the flame lift-off height are studied systematically by including one effect at a time in the simulations used for a posteriori validation. A simple model including the effects of chemical kinetics and scalar dissipation rate is suggested and used for non-premixed combustion contributions. The results clearly show that both Z-c correlation and non-premixed combustion effects are required in the premixed flamelets approach to get good agreement with the measured flame lift-off heights as a function of jet velocity. The flame brush structure reported in earlier experimental studies is also captured reasonably well for various axial positions. It seems that flame stabilisation is influenced by both premixed and non-premixed combustion modes, and their mutual influences. © 2014 Taylor & Francis.
Resumo:
Flames are often stabilised on bluff-bodies, yet their surface temperatures are rarely measured. This paper presents temperature measurements for the bluff body surface of the Cambridge/Sandia Stratified Swirl Burner. The flame is stabilized by a bluff body, designed to provide a series of turbulent premixed and stratified methane/air flames with a variable degree of swirl and stratification. Recently, modellers have raised concerns about the role of surface temperature on the resulting gas temperatures and the overall heat loss of the burner. Laser-induced phosphorescence is used to measure surface temperatures, with Mg4GeO6F:Mn as the excitation phosphor, creating a spatially resolved temperature map. Results show that the temperature of the bluff body is in the range 550-900 K for different operating conditions. The temperature distribution is strongly correlated with the degree of swirl and local equivalence ratio, reflecting the temperature distribution obtained in the gas phase. The overall heat loss represents only a small fraction (<0.5%) of the total heat load, yet the local surface temperature may affect the local heat transfer and gas temperatures. © 2014 The Combustion Institute.
Resumo:
With the application of a genetically modified yeast, estrogen receptor-activating compounds were detected in the soot and emission gas of a wood-burning household stove. The EC50 value of 17beta-estradiol was divided by the EC50 value of soot, and the obtained relative estrogenic value for raw soot was 2.37E-5, indicating that soot was about 100,000 times less estrogenic than 17beta-estradiol. Chemical analysis revealed that alkyl phenol, benzonic acid, and PAHs represented the major constituents in the most potent fractions of the soot. Along with PAHs, other constituents might also contribute to the estrogenicity of soot. (C) 2002 Elsevier Science (USA).
Resumo:
A novel miniature cylindrical combustor, whose chamber wall is made of porous material, has been designed and experimented for reducing heat loss and enhancing flame stability. The combustor has the function of reducing wall heat loss, extending residence time and avoiding radical chemical quenching with a self-thermal insulation concept in which heat loss reduction is obtained by the opposite flow directions between thermal energy transfer and mass flow. The methane/air mixture flames formed in the chamber are blue and tubular in shape. Between the flames and the porous wall, there is a thin unburned film that plays a significant role in reducing the flames' heat loss and keeping the flames stable. The porous wall temperature was 150-400 degrees C when the temperatures of the flames and exhaust gas were more than 1200 degrees C. When the equivalence ratio phi < 1.0, the methane conversion ratio was above 95%; the combustion efficiency was near 90%; and the overall sidewall heat loss was less than 15% in the 1.53 cm(3) chamber. Moreover, its combustion efficiency is stable in a wider combustion load (input power) range.
Resumo:
In a slagging combustor or furnace, the high combustion temperature makes the molten slag layer cover the wall and capture the particles. If these particles contain combustible matter, they will continue to burn on the running slag. As a result, the total amount of ash deposition will be much greater than that in dry-wall combustors and the total heat flux through the deposition surface will change greatly. Considering the limitations of existing simulation methods for slagging combustion, this paper introduces a new wall burning model and slag flow model from the analysis; of particle deposition phenomena. Combined with a conventional combustion simulation program, the total computational frame is introduced. From comparisons of simulation results from several kinds of methods with experimental data, the conclusion is drawn that the conventional simulation methods are not very suitable for slagging combustion and the wall burning mechanism should be considered more thoroughly.
Resumo:
Dichlorosilane, a gas at normal temperature with a boiling point of 8.3 degrees C, is very difficult to sample and detect using conventional methods. We reduced phosphorus in dichlorosilane to PH3 by hydrogen at high temperature, then PH3 was separated from chlorosilanes by NaOH solution and from other hydrides by chromatographic absorption. Thus the problem of interference of chlorosilanes and other hydrides was overcome and PH, was measured by a double flame photometric detector at 526 nm. This method was sensitive, reliable and convenient and the sensitivity reached as low as 0.04 mu g/l.
Resumo:
A single longitudinal mode and narrow line width external cavity semiconductor laser is proposed. It is constructed with a semiconductor laser, collimator, a flame grating, and current and temperature control systems. The one facet of semiconductor laser is covered by high transmission film, and another is covered by high reflection film. The flame grating is used as light feedback element to select the mode of the semiconductor laser. The temperature of the constructed external cavity semiconductor laser is stabilized in order of 10(-3)degreesC by temperature control system. The experiments have been carried out and the results obtained-the spectral fine width of this laser is compressed to be less than 1.4MHz from its original line-width of more than 1200GHz and the output stability (including power and mode) is remarkably enhanced.
Resumo:
A novel method based on wavelength-multiplexed line-of-sight absorption and profile fitting for non-uniform flow field measurement is reported. A wavelength scanning combing laser temperature and current modulation WMS scheme is used to implement the wavelength-multiplexed-profile fitting method. Second harmonic (2f) signal of eight H2O transitions features near 7,170 cm(-1) are measured in one period using a single tunable diode laser. Spatial resolved temperature distribution upon a CH4/air premixed flat flame burner is obtained. The result validates the feasibility of strategy for non-uniform flow field diagnostics by means of WMS-2f TDLAS.
Resumo:
perimentally at evaluated pressures and under normal- and micro-gravity conditions utilizing the 3.5 s drop tower of the National Microgravity Laboratory of China. The results showed that under micro-gravity conditions the natural convection is minimized and the flames become more planar and symmetric compared to normal gravity. In both normal- and micro-gravity experiments and for a given strain rate and fuel concentration, the flame luminosity was found to enhance as the pressure increases. On the other hand, at a given pressure, the flame luminosity was determined to weaken as the strain rate decreases. At a given strain rate, the fuel concentration at extinction was found to vary non-monotonically with pressure, namely it first increases and subsequently decreases with pressure. The limit fuel concentration peaks around 3 and 4 atm under normal- and micro-gravity, respectively. The extinction limits measured at micro-gravity were in good agreement with predictions obtained through detailed numerical simulations but they are notably lower compared to the data obtained under normal gravity. The simulations confirmed the non-monotonic variation of flammability limits with pressure, in agreement with previous studies. Sensitivity analysis showed that for pressures between one and 5 atm, the near-limit flame response is dominated by the competition between the main branching, H + O2 ? OH + O, and the pressure sensitive termination, H+O2+M? HO2 + M, reaction. However, for pressures greater than 5 atm it was determined that the HO2 kinetics result in further chain branching in a way that is analogous to the third explosion limit of H2/O2 mixtures. 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
利用高度为14 mm的水平窄通道对微重力条件下聚甲基丙烯酸甲酯(PMMA)和聚乙烯(PE)塑料材料表面的火焰传播进行了地面实验模拟研究. 在环境气体氧气浓度为30%和50%、低速气流速度小于15 cm/s的实验条件下, 实验测量了窄通道内材料表面火焰传播速度随气流速度的变化, 它们与微重力下热厚材料火焰传播速度的理论预测结果符合得相当好. 分析认为, 窄通道能够有效地限制浮力对流, 提高燃料表面固相热辐射在火焰传播中的相对作用, 从而提供模拟微重力下热厚材料表面火焰传播特性的实验环境