989 resultados para ethanol production yeasts
Resumo:
BACKGROUND: Biosurfactant production was investigated using two strains of Bacillus subtilis, one being a reference strain (B. subtilis 1012) and the other a recombinant of this (B. subtilis W1012) made able to produce the green fluorescent protein (GFP). RESULTS: Batch cultivations carried out at different initial levels of glucose (GO) in the presence of 10 g L(-1) casein demonstrated that the reference strain was able to release higher levels of biosurfactants in the medium at 5.0 <= G(0) <= 10 g L(-1) (B(max) = 104-110 mg L(-1)). The recombinant strain exhibited slightly lower levels of biosurfactants(B(max) = 90-104 mg L(-1))but only at higher glucose concentrations (G(0) >= 20 g L(-1)). Under these nutritional conditions, the fluorescence intensity linked to the production of GFP was shown to be associated with the cell concentration even after achievement of the stationary phase. CONCLUSION: The ability of the genetically-modified strain to simultaneously overproduce biosurfactant and GFP even at low biomass concentration makes it an interesting candidate for use as a biological indicator to monitor indirectly the biosurfactant production in bioremediation treatments. (C) 2008 Society of Chemical Industry
Resumo:
We previously demonstrated that conidia from Aspergillus fumigatus incubated with menadione and paraquat increases activity and expression of cyanide-insensitive alternative oxidase (AOX). Here, we employed the RNA silencing technique in A. fumigatus using the vector pALB1/aoxAf in order to down-regulate the aox gene. Positive transformants for aox gene silencing of A. fumigatus were more susceptible both to an imposed in vitro oxidative stress condition and to macrophages killing, suggesting that AOX is required for the A. fumigatus pathogenicity, mainly for the survival of the fungus conidia during host infection and resistance to reactive oxygen species generated by macrophages.
Resumo:
Background and purpose: The contribution of endothelin-1 (ET-1) to vascular hyper-reactivity associated with chronic ethanol intake, a major risk factor in several cardiovascular diseases, remains to be investigated. Experimental approach: The biphasic haemodynamic responses to ET-1 (0.01-0.1 nmol kg(-1), i.v.) or to the selective ET(B) agonist, IRL1620 (0.001-1.0 nmol kg(-1), i.v.), with or without ET(A) or ET(B) antagonists (BQ123 (c(DTrp-Dasp-Pro-Dval-Leu)) at 1 and 2.5 mg kg(-1) and BQ788 (N-cis-2,6-dimethyl-piperidinocarbonyl-L-gamma-methylleucyl1-D-1methoxycarbonyltryptophanyl-D-norleucine) at 0.25 mg kg(-1), respectively) were tested in anaesthetized rats, after 2 weeks` chronic ethanol treatment. Hepatic parameters and ET receptor protein levels were also determined. Key results: The initial hypotensive responses to ET-1 or IRL1620 were unaffected by chronic ethanol intake, whereas the subsequent pressor effects induced by ET-1, but not by IRL1620, were potentiated. BQ123 at 2.5 but not 1 mg kg(-1) reduced the pressor responses to ET-1 in ethanol-treated rats. Conversely, BQ788 (0.25 mg kg(-1)) potentiated ET-1-induced increases in mean arterial blood pressure in control as well as in ethanol-treated rats. Interestingly, in the latter group, increases in heart rate, induced by ET-1 at a dose of 0.025 mg kg(-1) were enhanced following ET(B) receptor blockade. Finally, we observed higher levels of ET(A) receptor in the heart and mesenteric artery and a reduction of ET(B) receptor protein levels in the aorta and kidney from rats chronically treated with ethanol. Conclusions and implications: Increased vascular reactivity to ET-1 and altered protein levels of ET(A) and ET(B) receptors could play a role in the pathogenesis of cardiovascular complications associated with chronic ethanol consumption.
Resumo:
The photochemical behavior of [Ru(NO)(NO)(2)pc] (pc = phthalocyanine) is reported in this paper. In addition to ligand localized absorption bands (lambda < 300 nm), the electronic spectrum of this complex in dichloromethane solution was dominated by an intense absorption at 640 nm characterized as Q-bands. Irradiation of [Ru(NO)(NO)(2)pc] at 366 and 660 nm led to the production of nitric oxide (NO) as detected by a NO-sensor. NO production by light irradiation at high energy involved excitation of d(pi)-pi* transition, while a photoinduced electron transfer occurred at long wavelength irradiation. The NO quantum yields varied from 1.4 x 10(-3) to 2.3 x 10(-2) mol einstein(-1), depending on oxygen concentration. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Scorpion envenomation induces a systemic immune response, and neurotoxins of venom act on specific ion channels, modulating neurotransmitter release or activity. However, little is known about the immunomodulatory effects of crude venom from scorpion Tityus serrulatus (TsV) or its toxins (Ts1, Ts2 and Ts6) in combination with lipopolysaccharide (LPS). To investigate the immunomodulatory effects of TsV and its toxins (Ts1, Ts2 and Ts6), J774.1 cells were stimulated with different concentrations (25, 50 and 100 mu g/mL) of venom or toxins pre-stimulated or not with LPS (0.5 mu g/mL). Macrophage cytotoxicity was assessed, and nitric oxide (NO) and cytokine production were analyzed utilizing the culture supernatants. TsV and its toxins did not produce cytotoxic effects. Depending on the concentrations used, TsV, Ts1 and Ts6 stimulated the production of NO, interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha in J774.1 cells, which were enhanced under LPS co-stimulation. However, LPS + Ts2 inhibited NO, IL-6 and TNF-alpha production, and Ts2 alone stimulated the production of IL-10, suggesting an anti-inflammatory activity for this toxin. Our findings are important for the basic understanding of the mechanisms involved in macrophage activation following envenomation: additionally, these findings may contribute to the discovery of new therapeutic compounds to treat immune-mediated diseases. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Protease production was carried out in solid state fermentation. The enzyme was purified through precipitation with ethanol at 72% followed by chromatographies in columns of Sephadex G75 and Sephacryl S100. It was purified 80-fold and exhibited recovery of total activity of 0.4%. SDS-PAGE analysis indicated an estimated molecular mass of 24.5 kDa and the N-terminal sequence of the first 22 residues was APYSGYQCSMQLCLTCALMNCA. Purified protease was only inhibited by EDTA (96.7%) and stimulated by Fe(2+) revealing to be a metalloprotease activated by iron. Optimum pH was 5.5, optimum temperature was 75 degrees C, and it was thermostable at 65 degrees C for 1 h maintaining more than 70% of original activity. Through enzyme kinetic studies, protease better hydrolyzed casein than azocasein. The screening of fluorescence resonance energy transfer (FRET) peptide series derived from Abz-KLXSSKQ-EDDnp revealed that the enzyme exhibited preference for Arg in P(1) (k(cat)/K(m) = 30.1 mM(-1) s(-1)).
Resumo:
Background: Topical flavonoids, such as quercetin, have been shown to reduce ultraviolet (UV) irradiation-mediated skin damage. However, the mechanisms and signaling pathways involved in this protective effect are not clear. UV irradiation leads to activation of two major signaling pathways, namely nuclear factor kappa B (NF-kappa B) and activator protein-1 (AP-1) pathways. Activation of NF-kappa B pathway by UV irradiation stimulates inflammatory cytokine expression, whereas activation of AP-1 pathway by UV irradiation promotes matrix metalloproteinase (MMP) production. Both pathways contribute to UV irradiation-induced skin damage, such as photoaging and skin tumor formation. Objective: To elucidate the underlying mechanism, we examined the effect of quercetin on UV irradiation induced activation of NF-kappa B and AP-1 pathways. Methods: Primary human keratinocytes, the major skin cell type subjected to physiological solar UV irradiation, were used to study the effects of quercetin on UV irradiation-induced signal transduction pathways. Results: Quercetin decreased UV irradiation-induced NF-kappa B DNA-binding by 80%. Consequently, quercetin suppressed UV irradiation-induced expression of inflammatory cytokines IL-1 beta (similar to 60%), IL-6 (similar to 80%), IL-8 (similar to 76%) and TNF-alpha (similar to 69%). In contrast, quercetin had no effect on UV irradiation activation of three MAP kinases, ERK, JNK, or p38. Accordingly, induction of AP-1 target genes such as MMP-1 and MMP-3 by UV irradiation was not suppressed by quercetin. Conclusion: Our data indicate that the ability of quercetin to block UV irradiation-induced skin inflammation is mediated, at least in part, by its inhibitory effect on NF-kappa B activation and inflammatory cytokine production. (C) 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Some studies have recently suggested that mercury (Hg)-exposed populations face increased risks of cardiovascular diseases, and experimental data indicate that such risks might be due to reductions in nitric oxide bioavailability. However, no previous study has examined whether Hg exposure affects plasma nitrite concentrations in humans as an indication of nitric oxide production. Here, we investigated whether there is an association between circulating nitrite and Hg concentrations in whole blood, plasma and hair from an exposed methylmercury (MeHg) population. Hair and blood samples were collected from 238 persons exposed to MeHg from fish consumption. Hg concentrations in plasma (PHg), whole blood (BHg) and hair Hg (HHg) were determined by inductively coupled plasma-mass spectrometry. Mean BHg content was 49.8 +/- 35.2 mu g/l, mean PHg was 7.8 +/- 6.9 mu g/l and HHg 14.6 +/- 10.6 mu g/g. Mean plasma nitrite concentration was 253.2 +/- 105.5 nM. No association was found between plasma nitrite concentration and BHg or HHg concentrations in a univariate model. However, multiple regression models adjusted for gender, age and fish consumption showed a significant association between plasma nitrite and plasma Hg concentration (beta = -0.1, p < 0.001). Our findings constitute preliminary clinical evidence that exposure to MeHg may cause inhibitory effects on the production of endothelial nitric oxide.
Resumo:
Yeasts of the Cryptococcus genus are distributed in nature associated to animal and vegetal organic residues. Occasionally, species other than C. neoformans may be responsible for infectious diseases in human and animals. This study aims to determine the occurrence of Cryptococcus species in the atmosphere and bird droppings in the city of Ribeirao Preto, Sao Paulo, Brazil, and to evaluate three virulence factors: capsule formation, growth at 37 degrees C and melanin production. We analyzed 86 environmental samples (54 droppings and 32 air). Of the 41 strains isolated, 15 were C. neoformans var. neoformans (12 droppings and 3 air), 15 C. albidus (12 droppings and 3 air), 9 C. laurentii (7 droppings and 2 air) and 2 C. uniguttulatus (from droppings). Capsules were produced by 93.3% of C. neoformans var. neoformans, 66.7% of C. albidus, 88.9% of C. laurentii and 50% (1/2) of C. uniguttulatus. All, strains of C. neoformans, 20% of C. albidus and 44.4% of C. laurentii were able to grow at 37 degrees C. The melanin production on DOPA agar was verified in C. neoformans (93.3%), C. albidus (26.7%) and C. laurentii (66.7%). We concluded that different Cryptococcus species coexist in the same ecological niche and they are able to produce virulence factors. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
The genus Cryptococcus includes free-developing species, a few of which are of medical importance. Some, such as C. neoformans and C. gattii, cause infections in man frequently and C. albidus and C. laurentii cause less so. The aims of this study were to evaluate organ colonization after inoculation of C. albidus and C. laurentii isolates in normal BALB/c mice, the virulence factors (growth at 37A degrees C, capsule, melanin, proteinase, and phospholipase production) and the molecular profile (PCR-fingerprinting) of the yeasts before and after infection. The importance of different profiles (virulence and molecular) was considered in relation to the distribution in different organs and to the time intervals of isolation from organs. C. albidus was isolated from animal organs 2 to 10 days after inoculation and C. laurentii from 2 to 120 days. Most isolates of the two species kept the virulence factors showed before inoculation. The high homogeneity of the molecular profile of C. albidus and the high heterogeneity of C. laurentii were kept through the passages in animals. It is concluded that most isolates of both species were recovered from the animal organs after 5 or more days, and phenotypes were not altered by inoculation. No molecular alteration was detected and the virulence factors were not related to the time intervals before isolation from organs.
Resumo:
The present work deals with improving the production and stabilization of lipases from Cercospora kikuchii. Maximum enzyme production (9.384 U/ml) was obtained after 6 days in a medium supplemented with 2% soybean oil. The lipases were spray dried with different adjuvants, and their stability was studied. The residual enzyme activity after drying with 10% (w/v) of lactose, b- cyclodextrin, maltodextrin, mannitol, gum arabic, and trehalose ranged from 63 to 100%. The enzyme activity was lost in the absence of adjuvants. Most of the adjuvants used kept up at least 50% of the enzymatic activity at 5 degrees C and 40% at 25 degrees C after 8 months. The lipase dried with 10% of beta-cyclodextrin retained 72% of activity at 5 degrees C. Lipases were separated by butyl-sepharose column into 4 pools, and pool 4 was partially purified (33.1%; 269.5 U/mg protein). This pool was also spray dried in maltodextrin DE10, and it maintained 100% of activity.
Resumo:
The goal of this study is to produce oleanolic acid derivatives by biotransformation process using Mucor rouxii and evaluate their antimicrobial activity against oral pathogens. The microbial transformation was carried out in shake flasks at 30A degrees C for 216 h with shaking at 120 rpm. Three new derivatives, 7 beta-hydroxy-3-oxo-olean-12-en-28-oic acid, 7 beta,21 beta-dihydroxy-3-oxo-olean-12-en-28-oic acid, and 3 beta,7 beta,21 beta-trihydroxyolean-12-en-28-oic acid, and one know compound, 21 beta-hydroxy-3-oxo-olean-12-en-28-oic acid, were isolated, and the structures were elucidated on the basis of spectroscopic analyses. The antimicrobial activity of the substrate and its transformed products was evaluated against five oral pathogens. Among these compounds, the derivative 21 beta-hydroxy-3-oxo-olean-12-en-28-oic acid displayed the strongest activity against Porphyromonas gingivalis, which is a primary etiological agent of periodontal disease. In an attempt to improve the antimicrobial activity of the derivative 21 beta-hydroxy-3-oxo-olean-12-en-28-oic acid, its sodium salt was prepared, and the minimum inhibitory concentration against P. gingivalis was reduced by one-half. The biotransformation process using M. rouxii has potential to be applied to the production of oleanolic acid derivatives. Research and antimicrobial activity evaluation of new oleanolic acid derivatives may provide an important contribution to the discovery of new adjunct agents for treatment of dental diseases such as dental caries, gingivitis, and periodontitis.
Resumo:
Background and purpose: Epidemiological data suggest that the risk of ethanol-associated cardiovascular disease is greater in men than in women. This study investigates the mechanisms underlying gender-specific vascular effects elicited by chronic ethanol consumption in rats. Experimental approach: Vascular reactivity experiments using standard muscle bath procedures were performed on isolated thoracic aortae from rats. mRNA and protein for inducible NO synthase (iNOS) and for endothelial NOS (eNOS) was assessed by RT-PCR or western blotting, respectively. Key results: In male rats, chronic ethanol consumption enhanced phenylephrine-induced contraction in both endothelium-intact and denuded aortic rings. However, in female rats, chronic ethanol consumption enhanced phenylephrine-induced contraction only in endothelium denuded aortic rings. After pre-incubation of endothelium-intact rings with L-NAME, both male and female ethanol-treated rats showed larger phenylephrine-induced contractions in aortic rings, compared to the control group. Acetylcholine-induced relaxation was not affected by ethanol consumption. The effects of ethanol on responses to phenylephrine were similar in ovariectomized (OVX) and intact (non-OVX) female rats. In the presence of aminoguanidine, but not 7-nitroindazole, the contractions to phenylephrine in rings from ethanol-treated female rats were greater than that found in control tissues in the presence of the inhibitors. mRNA levels for eNOS and iNOS were not altered by ethanol consumption. Ethanol intake reduced eNOS protein levels and increased iNOS protein levels in aorta from female rats. Conclusions and implications: Gender differences in the vascular effects elicited by chronic ethanol consumption were not related to ovarian hormones but seemed to involve the upregulation of iNOS.