917 resultados para elliptic curve cryptography
Resumo:
Literally, the word compliance suggests conformity in fulfilling official requirements. The thesis presents the results of the analysis and design of a class of protocols called compliant cryptologic protocols (CCP). The thesis presents a notion for compliance in cryptosystems that is conducive as a cryptologic goal. CCP are employed in security systems used by at least two mutually mistrusting sets of entities. The individuals in the sets of entities only trust the design of the security system and any trusted third party the security system may include. Such a security system can be thought of as a broker between the mistrusting sets of entities. In order to provide confidence in operation for the mistrusting sets of entities, CCP must provide compliance verification mechanisms. These mechanisms are employed either by all the entities or a set of authorised entities in the system to verify the compliance of the behaviour of various participating entities with the rules of the system. It is often stated that confidentiality, integrity and authentication are the primary interests of cryptology. It is evident from the literature that authentication mechanisms employ confidentiality and integrity services to achieve their goal. Therefore, the fundamental services that any cryptographic algorithm may provide are confidentiality and integrity only. Since controlling the behaviour of the entities is not a feasible cryptologic goal,the verification of the confidentiality of any data is a futile cryptologic exercise. For example, there exists no cryptologic mechanism that would prevent an entity from willingly or unwillingly exposing its private key corresponding to a certified public key. The confidentiality of the data can only be assumed. Therefore, any verification in cryptologic protocols must take the form of integrity verification mechanisms. Thus, compliance verification must take the form of integrity verification in cryptologic protocols. A definition of compliance that is conducive as a cryptologic goal is presented as a guarantee on the confidentiality and integrity services. The definitions are employed to provide a classification mechanism for various message formats in a cryptologic protocol. The classification assists in the characterisation of protocols, which assists in providing a focus for the goals of the research. The resulting concrete goal of the research is the study of those protocols that employ message formats to provide restricted confidentiality and universal integrity services to selected data. The thesis proposes an informal technique to understand, analyse and synthesise the integrity goals of a protocol system. The thesis contains a study of key recovery,electronic cash, peer-review, electronic auction, and electronic voting protocols. All these protocols contain message format that provide restricted confidentiality and universal integrity services to selected data. The study of key recovery systems aims to achieve robust key recovery relying only on the certification procedure and without the need for tamper-resistant system modules. The result of this study is a new technique for the design of key recovery systems called hybrid key escrow. The thesis identifies a class of compliant cryptologic protocols called secure selection protocols (SSP). The uniqueness of this class of protocols is the similarity in the goals of the member protocols, namely peer-review, electronic auction and electronic voting. The problem statement describing the goals of these protocols contain a tuple,(I, D), where I usually refers to an identity of a participant and D usually refers to the data selected by the participant. SSP are interested in providing confidentiality service to the tuple for hiding the relationship between I and D, and integrity service to the tuple after its formation to prevent the modification of the tuple. The thesis provides a schema to solve the instances of SSP by employing the electronic cash technology. The thesis makes a distinction between electronic cash technology and electronic payment technology. It will treat electronic cash technology to be a certification mechanism that allows the participants to obtain a certificate on their public key, without revealing the certificate or the public key to the certifier. The thesis abstracts the certificate and the public key as the data structure called anonymous token. It proposes design schemes for the peer-review, e-auction and e-voting protocols by employing the schema with the anonymous token abstraction. The thesis concludes by providing a variety of problem statements for future research that would further enrich the literature.
Resumo:
Fourier transfonn (FT) Raman, Raman microspectroscopy and Fourier transform infrared (FTIR) spectroscopy have been used for the structural analysis and characterisation of untreated and chemically treated wool fibres. For FT -Raman spectroscopy novel methods of sample presentation have been developed and optimised for the analysis of wool. No significant fluorescence was observed and the spectra could be obtained routinely. The stability of wool keratin to the laser source was investigated and the visual and spectroscopic signs of sample damage were established. Wool keratin was found to be extremely robust with no signs of sample degradation observed for laser powers of up to 600 m W and for exposure times of up to seven and half hours. Due to improvements in band resolution and signal-to-noise ratio, several previously unobserved spectral features have become apparent. The assignment of the Raman active vibrational modes of wool have been reviewed and updated to include these features. The infrared spectroscopic techniques of attenuated total reflectance (ATR) and photoacoustic (P A) have been used to examine shrinkproofed and mothproofed wool samples. Shrinkproofing is an oxidative chemical treatment used to selectively modifY the surface of a wool fibre. Mothproofing is a chemical treatment applied to wool for the prevention of insect attack. The ability of PAS and A TR to vary the penetration depth by varying certain instrumental parameters was used to obtain spectra of the near surface regions of these chemically treated samples. These spectra were compared with those taken with a greater penetration depth, which therefore represent more of the bulk wool sample. The PA and ATR spectra demonstrated that oxidation was restricted to the near-surface layer of wool. Extensive curve fitting of ATR spectra of untreated wool indicated that cuticle was composed of a mixed protein conformation, but was predominately that of an a.-helix. The cortex was proposed to be a mixture of both a.helical and ~-pleated sheet protein conformations. These findings were supported by PAS depth profiling results. Raman microspectroscopy was used in an extensive investigation of the molecular structure of the wool fibre. This included determining the orientation of certain functional groups within the wool fibre and the symmetry of particular vibrations. The orientation ofbonds within the wool fibre was investigated by orientating the wool fibre axis parallel and then perpendicular to the plane of polarisation of the electric vector of the incident radiation. It was experimentally determined that the majority of C=O and N-H bonds of the peptide bond of wool lie parallel to the fibre axis. Additionally, a number of the important vibrations associated with the a-helix were also found to lie parallel to the fibre axis. Further investigation into the molecular structure of wool involved determining what effect stretching the wool fibre had on bond orientation. Raman spectra of stretched and unstretched wool fibres indicated that extension altered the orientation ofthe aromatic rings, the CH2 and CH3 groups of the amino acids. Curve fitting results revealed that extension resulted in significant destruction of the a-helix structure a substantial increase in the P-pleated sheet structure. Finally, depolarisation ratios were calculated for Raman spectra. The vibrations associated with the aromatic rings of amino acids had very low ratios which indicated that the vibrations were highly symmetrical.
Resumo:
A group key exchange (GKE) protocol allows a set of parties to agree upon a common secret session key over a public network. In this thesis, we focus on designing efficient GKE protocols using public key techniques and appropriately revising security models for GKE protocols. For the purpose of modelling and analysing the security of GKE protocols we apply the widely accepted computational complexity approach. The contributions of the thesis to the area of GKE protocols are manifold. We propose the first GKE protocol that requires only one round of communication and is proven secure in the standard model. Our protocol is generically constructed from a key encapsulation mechanism (KEM). We also suggest an efficient KEM from the literature, which satisfies the underlying security notion, to instantiate the generic protocol. We then concentrate on enhancing the security of one-round GKE protocols. A new model of security for forward secure GKE protocols is introduced and a generic one-round GKE protocol with forward security is then presented. The security of this protocol is also proven in the standard model. We also propose an efficient forward secure encryption scheme that can be used to instantiate the generic GKE protocol. Our next contributions are to the security models of GKE protocols. We observe that the analysis of GKE protocols has not been as extensive as that of two-party key exchange protocols. Particularly, the security attribute of key compromise impersonation (KCI) resilience has so far been ignored for GKE protocols. We model the security of GKE protocols addressing KCI attacks by both outsider and insider adversaries. We then show that a few existing protocols are not secure against KCI attacks. A new proof of security for an existing GKE protocol is given under the revised model assuming random oracles. Subsequently, we treat the security of GKE protocols in the universal composability (UC) framework. We present a new UC ideal functionality for GKE protocols capturing the security attribute of contributiveness. An existing protocol with minor revisions is then shown to realize our functionality in the random oracle model. Finally, we explore the possibility of constructing GKE protocols in the attribute-based setting. We introduce the concept of attribute-based group key exchange (AB-GKE). A security model for AB-GKE and a one-round AB-GKE protocol satisfying our security notion are presented. The protocol is generically constructed from a new cryptographic primitive called encapsulation policy attribute-based KEM (EP-AB-KEM), which we introduce in this thesis. We also present a new EP-AB-KEM with a proof of security assuming generic groups and random oracles. The EP-AB-KEM can be used to instantiate our generic AB-GKE protocol.
Resumo:
This study was designed to derive central and peripheral oxygen transmissibility (Dk/t) thresholds for soft contact lenses to avoid hypoxia-induced corneal swelling (increased corneal thickness) during open eye wear. Central and peripheral corneal thicknesses were measured in a masked and randomized fashion for the left eye of each of seven subjects before and after 3 h of afternoon wear of five conventional hydrogel and silicone hydrogel contact lens types offering a range of Dk/t from 2.4 units to 115.3 units. Curve fitting for plots of change in corneal thickness versus central and peripheral Dk/t found threshold values of 19.8 and 32.6 units to avoid corneal swelling during open eye contact lens wear for a typical wearer. Although some conventional hydrogel soft lenses are able to achieve this criterion for either central or peripheral lens areas (depending on lens power), in general, no conventional hydrogel soft lenses meet both the central and peripheral thresholds. Silicone hydrogel contact lenses typically meet both the central and peripheral thresholds and use of these lenses therefore avoids swelling in all regions of the cornea. ' 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 92B: 361–365, 2010
Resumo:
Gel dosimeters are of increasing interest in the field of radiation oncology as the only truly three-dimensional integrating radiation dosimeter. There are a range of ferrous-sulphate and polymer gel dosimeters. To be of use, they must be water-equivalent. On their own, this relates to their radiological properties as determined by their composition. In the context of calibration of gel dosimeters, there is the added complexity of the calibration geometry; the presence of containment vessels may influence the dose absorbed. Five such methods of calibration are modelled here using the Monte Carlo method. It is found that the Fricke gel best matches water for most of the calibration methods, and that the best calibration method involves the use of a large tub into which multiple fields of different dose are directed. The least accurate calibration method involves the use of a long test tube along which a depth dose curve yields multiple calibration points.