992 resultados para drying parameters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twenty-five samples from six subenvironments in the barrier-lagoon systems in northeastern Shandong province, China, are examined. A statistical method is used to study the roundness variation of grains of different sizes. Roundness of very fine pebble and very coarse sand varies significantly in different subenvironments. It is possible to discriminate among aqueous depositional environments using the roundness of grains of these sizes. Roundness of grains finer than 0.84 φ is not distinguishable in different subenvironments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unique surface-sensitive properties make quantum dots (QDs) great potential in the development of sensors for various analytes. However, quantum dots are not only sensitive to a certain analyte, but also to the surrounding conditions. The controlled response to analyte may be the first step in the designing of functional quantum dots sensors. In this study, taking the quenching effect of benzoquinone (BQ) on CdTe QDs as model, several critical parameters of buffer solution conditions with potential effect on the sensors were investigated. The pH value and the concentration of sodium citrate in the buffer solution critically influenced the quenching effects of BQ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opened hollow microspheres of organoclays were prepared via spray drying the suspension of modified Na+-montmorillonite (Na+-MMT) with alkylsulfonate. The microstructure and thermal properties of these opened hollow spheres were characterized by means of wide-angle X-ray diffraction, field emission scanning electron microscopy, and thermogravimetric analysis. The results showed that the organoclays had larger interlayer spacing compared with pure Na+-MMT and higher thermal stability relative to the alkylsufonate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulations are adopted to calculate the equation of state characteristic parameters P*, rho*, and T* of isotactic polypropylene (iPP) and poly(ethylene-co-octene) (PEOC), which can be further used in the Sanchez-Lacombe lattice fluid theory (SLLFT) to describe the respective physical properties. The calculated T* is a function of the temperature, which was also found in the literature. To solve this problem, we propose a Boltzmann fitting of the data and obtain T* at the high-temperature limit. With these characteristic parameters, the pressure-volume-temperature (PVT) data of iPP and PEOC are predicted by the SLLFT equation of state. To justify the correctness of our results, we also obtain the PVT data for iPP and PEOC by experiments. Good agreement is found between the two sets of data. By integrating the Euler-Lagrange equation and the Cahn-Hilliard relation, we predict the density profiles and the surface tensions for iPP and PEOC, respectively. Furthermore, a recursive method is proposed to obtain the characteristic interaction energy parameter between iPP and PEOC. This method, which does not require fitting to the experimental phase equilibrium data, suggests an alternative way to predict the phase diagrams that are not easily obtained in experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Y0.9-xGdxEu0.1BO3 phosphors were synthesized by spray drying (SD) method, and the results were compared with those by conventional solid state (SS) and citrate gel (GC) methods. The PL intensity of phosphors increases with the increase of x value in Y0.9-xGdxEu0.1BO3 (prepared by SD) due to an energy migration process like Gd3+ - (Gd3+)(n) - Eu3+ occurred in the material. Compared with the latter two methods, the phosphor particles prepared by spray drying method have a better morphology, such as homogeneous size (about 1similar to3 mum) with spherical shape and smooth surface. Furthermore, the spray drying-derived phosphors have higher photoluminescence (PL) intensity than those by citrate gel method, but still a little lower than those by the solid state method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous study, we reported observation of the novel inverted phase (the minority blocks comprising the continuum phase) in kinetically controlled phase separating solution-cast poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer films [Zhang et al. Macromolecules 2000, 33, 9561-7]. In this study, we adopt the same approach to investigate the formation of inverted phase in a series of solution-cast poly(styrene-b-butadiene) (SB) asymmetric diblock copolymers having nearly equal polystyrene (PS) weight fraction (about 30 wt %) but different molecular weights. The microstructure of the solution-cast block copolymer films resulting from different solvent evaporation rates, R, was inspected, from which the kinetically frozen-in phase structures at qualitatively different block copolymer concentrations and correspondingly different effective interaction parameter, chieff, can be deduced. Our result shows that there is a threshold molecular weight or range of molecular weight below which the unusual inverted phase is accessible by controlling the solvent evaporation rate. In comparing the present result with that of our previous study on the SBS triblock copolymer, we find that the formation of the inverted phase has little bearing on the chain architecture. We performed numerical calculations for the free energy of block copolymer cylinders and found that the normal phase is always preferred irrespective of the interaction parameter and molecular weight, which suggests the formation of the inverted phase to have a kinetic origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bond covalency and valence of elements in HgBa2Can-1CunO2n+2+delta (n = 1, 2, 3, 4) were calculated and their relationship with T-c was discussed. For both oxygen and argon annealed samples, the results indicated that with the increase of n, the trend of bond covalency of Hg-O and Cu-O was the same or opposite compared with that of superconducting temperature. This may suggest that the magnitudes of Cu-O and Hg-O bond covalency are important in governing the superconducting temperature. For the highest T-c sample, Hg had the lowest valence, implying that lower valence of Hg was preferred in order to produce higher T-c. For fixed n, the valence of Cu in oxygen annealed samples was larger than that in argon annealed samples, indicating that oxygen annealed samples produced more carriers than argon annealed samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The X-ray diffraction patterns of the crystalline aromatic ketone polymer PEKEKmK (aryl ether ketone ether ketone ketone polymer containing meta-phenyl links) have been investigated (for the chemical structure, see Formula). An orthorhombic unit cell is proposed to contain two chains with a = 0.772 nm, b = 0.604 nm and c = 2.572 nm. According to the orthorhombic system, the 11 reflections of this polymer were indexed. Meanwhile, variation in unit cell parameters with crystallization temperatures of PEKEKmK was also investigated. [GRAPHICS]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical bond parameters, that is, bond covalency, bond valence, macroscopic linear susceptibility, and oxidation states of elements in Sr3MRhO6 (M=Sm, Eu, Tb, Dy, Ho, Er, Yb) have been calculated. The results indicate that the bond covalency of M-O decreases sharply with the decrease of ionic radius of M3+ from Sm to Yb, while no obvious trend has been found for Rh-O and Sr-O bonds. The global instability index indicates that the crystal structures of Sr(3)MrhO(6) (M = Sm, Eu, Tb, Dy, Ho) have strained bonds.