796 resultados para crushing strength
Resumo:
Cold-formed steel members are subject to failure caused by buckling, normally under loads smaller than those corresponding to partial or total yielding of the cross section. The buckling of members in bending can be classified as local or global, and the occurrence of one or the other type is expected by the members' geometric characteristics and by the constraints and load conditions. One of the local instability modes that can characterize a member's failure is distortional buckling of the cross section occurring on its own plane and involving lateral displacements and rotations. This paper presents and discusses the procedures and results obtained from experimental tests of cold-formed steel members under bending. Forty-eight beams were carried out on members in simple lipped channel, in pairs, with 6-meter spans and loads applied by concentrated forces at every 1/3 of the span. The thickness, width and dimensions, of the stiffeners were chosen so that the instability by distortion buckling of the cross section was the principal failure mode expected. The experimental results are compared with the obtained results by using the direct strength method.
Resumo:
The aim of the work was to evaluate the influence of the temperature of investment healting on the tensile strength and Vickers hardness of CP Ti and Ti-6Al-4V alloy casting. Were obtained for the tensile strength test dumbbell rods that were invested in the Rematitan Plus investment and casting in the Discovery machine cast. Thirty specimens were obtained, fiftten to the CP Titanium and fifteen to the Ti-6Al-4V alloy, five samples to each an of the three temperatures of investment: 430°C (control group), 480°C and 530°C. The tensile test was measured by means of a universal testing machine, MTS model 810, at a strain of 1.0 mm/min. After the tensile strenght test the specimens were secctioned, embedded and polished to hardness measurements, using a Vickers tester, Micromet 2100. The means values to tensile tests to the temperatures 430°C, 480 and 530: CP Ti (486.1 - 501.16 - 498.14 -mean 495.30 MPa) and Ti-6Al-4V alloy (961.33 - 958.26 - 1005.80 - mean 975.13 MPa) while for the Vickers hardness the values were (198.06, 197.85, 202.58 - mean 199.50) and (352.95, 339.36, 344.76 - mean 345.69), respectively. The values were submitted to Analysis of Variance (ANOVA) and Tukey' s Test that indicate differences significant only between the materials, but not between the temperature, for both the materias. It was conclued that increase of the temperature of investment its not chance the tensile strength and the Vickers hardness of the CP Titanium and Ti-6Al-4V alloy.
Resumo:
The purpose of this study was to evaluate in vitro three adhesive systems: a total etching single-component system (G1 Prime & Bond 2.1), a self-etching primer (G2 Clearfil SE Bond), and a self-etching adhesive (G3 One Up Bond F), through shear bond strength to enamel of human teeth, evaluating the type of fracture through stereomicroscopy, following the ISO guidance on adhesive testing. Thirty sound premolars were bisected mesiodistally and the buccal and lingual surfaces were embedded in acrylic resin, polished up to 600-grit sandpapers, and randomly assigned to three experimental groups (n = 20). Composite resin cylinders were added to the tested surfaces. The specimens were kept in distilled water (37°C/24 h), thermocycled for 500 cycles (5°C-55°C) and submitted to shear testing at a crosshead speed of 0.5 mm/min. The type of fracture was analyzed under stereomicroscopy and the data were submitted to Anova, Tukey and Chi-squared (5%) statistical analyses. The mean adhesive strengths were G1: 18.13 ± 6.49 MPa, (55% of resin cohesive fractures); G2: 17.12 ± 5.80 MPa (90% of adhesive fractures); and G3: 10.47 ± 3.14 MPa (85% of adhesive fractures). In terms of bond strength, there were no significant differences between G1 and G2, and G3 was significantly different from the other groups. G1 presented a different type of fracture from that of G2 and G3. In conclusion, although the total etching and self-etching systems presented similar shear bond strength values, the types of fracture presented by them were different, which can have clinical implications.
Resumo:
The use of acid etchants to produce surface demineralization and collagen network exposure, allowing adhesive monomers interdiffusion and consequently the formation of a hybrid layer, has been considered the most efficient mechanism of dentin bonding. The aim of this study was to compare the tensile bond strength to dentin of three adhesive systems, two self-etching ones (Clearfil SE Bond - CSEB and One Up Bond F - OUBF) and one total-etching one (Single Bond - SB), under three dentinal substrate conditions (wet, dry and re-wet). Ninety human, freshly extracted third molars were sectioned at the occlusal surface to remove enamel and to form a flat dentin wall. The specimens were restored with composite resin (Filtek Z250) and submitted to tensile bond strength testing (TBS) in an MTS 810. The data were submitted to two-way ANOVA and Tukey's test (p = 0.05). Wet dentin presented the highest TBS values for SB and CSEB. Dry dentin and re-wet produced significantly lower TBS values when using SB. OUBF was not affected by the different conditions of the dentin substrate, producing similar TBS values regardless of the surface pretreatments.
Resumo:
Purpose: This study compared the microtensile bond strength of resin-based cement (Panavia F) to silica-coated, silanized, glass-infiltrated high-alumina zirconia (In-Ceram Zirconia) ceramic in dry conditions and after various aging regimens. Materials and Methods: The specimens were placed in 1 of 4 groups: group 1: dry conditions (immediate testing without aging); group 2: water storage at 37°C for 150 days; group 3: 150 days of water storage followed by thermocycling (× 12,000, 5°C to 55°C); group 4: water storage for 300 days; group 5: water storage for 300 days followed by thermocycling. Results: Group 1 showed a significantly higher microtensile bond strength value (26.2 ± 1 MPa) than the other aging regimens (6.5 ± 1, 6.2 ± 2, 4.5 ± 1, 4.3 ± 1 MPa for groups 2, 3, 4, and 5, respectively) (P < .01). Conclusion: Satisfactory results were seen in dry conditions, but water storage and thermocycling resulted in significantly weaker bonds between the resin cement and the zirconia.
Resumo:
This study aimed to evaluate the durability of adhesion between acrylic teeth and denture base acrylic resin. The base surfaces of 24 acrylic teeth were flatted and submitted to 4 surface treatment methods: SM1 (control): No SM; SM2: application of a methyl methacrylate-based bonding agent (Vitacol); SM3: air abrasion with 30-μm silicone oxide plus silane; SM4: SM3 plus SM2. A heat-polymerized acrylic resin was applied to the teeth. Thereafter, bar specimens were produced for the microtensile test at dry and thermocyled conditions (60 days water storage followed by 12,000 cycles). The results showed that bond strength was significantly affected by the SM (P < .0001) (SM4 = SM2 > SM3 > SM1) and storage regimens (P < .0001) (dry > thermocycled). The methyl methacrylate-based adhesive showed the highest bond strength.
Tensile bond strength: Evaluation of four current adhesive systems in abraded enamel and deep dentin
Resumo:
This study aimed to evaluate the tensile bond strength of adhesive systems in abraded enamel and deep dentin of the occlusal surface of forty human molar teeth. Enamel surfaces as well as the rest of the teeth were coated with epoxy resin and regularized and polished with silicon carbide sandpapers. The 40 teeth were randomized into eight groups of five teeth per group. Four groups were assigned to have deep dentin as the dental substrate and the other four had abraded enamel as the substrate for the adhesives to be tested. The adhesives being tested were the total etching Single Bond: SB, the self-etching Clearfil SE bond: CSEB, self-etching One Up Bond F: OUBF and the self-etching Self-Etch Bond: SEB adhesives. The samples (teeth) were restored with composite resin and subjected to a traction assay. The results were statistically analyzed using the ANOVA and TUKEY tests. The total etching SB adhesive system had the greatest bonding strength of all the adhesives tested, on both dental substrates (20.1 MegaPascals (MPa) on abraded enamel and 19.4 MPa on deep dentin). Of the self-etching dental adhesives tested, CSEB had the greatest bonding strength on both substrates (14.6 MPa on abraded enamel and 15.4 MPa on deep dentin). Both OUBF (11.0 MPa for enamel, 13.1 MPa for dentin) and SEB (10.2 MPa for enamel, 12.6 MPa for dentin) showed comparable bonding strengths without any significant differences for either substrate Thus, the total etching SB adhesive system had better bonding strength than the other self-etching adhesives used, regardless of the dental substrate to which the adhesives had been bonded.
Resumo:
Purpose: This study compared the shear bond strength (SBS) to enamel of rest seats made with a glass-ionomer cement (Fuji IX GP Fast), a resin-modified glass-ionomer cement (Fuji II LC), and a composite resin (Z100 MP) under monotonic and cyclic loading. Materials and Methods: Rest seats were built up onto the lingual surfaces of 80 intact human mandibular incisors. Specimens (n=10) were stored in distilled water at 37°C for 30 days and subjected to shear forces in a universal testing machine (0.5 mm/min) until fracture. The SBS values were calculated (MPa) using the bonding area (9.62 mm2) delimited by adhesive tags. A staircase approach was used to determine the SBS fatigue limit of each material. Specimens were submitted to either 10,000 cycles (5 Hz) or until specimen fracture. A minimum of 15 specimens was tested for each material. Scanning electron microscopy was used to examine the mode of failure. Data were statistically analyzed with one-way ANOVA and Tukey HSD tests (α = 0.05). Results: Z100 MP yielded higher (p < 0.05) SBS (12.25 MPa) than Fuji IX GP Fast (7.21 MPa). No differences were found between Fuji II LC (10.29 MPa) and the other two materials (p > 0.05). Fuji II LC (6.54 MPa) and Z100 MP (6.26 MPa) had a similar SBS limit. Fuji IX GP Fast promoted the lowest (p < 0.05) SBS fatigue limit (2.33 MPa). All samples showed cohesive failure patterns. Conclusion: Fatigue testing can provide a better means of estimating the performance of rest seats made with dental restoratives.
Resumo:
Purpose: The effect of water immersion on the shear bond strength (SBS) between 1 heat-polymerizing acrylic resin (Lucitone 550-L) and 4 autopolymerizing reline resins (Kooliner-K, New Truliner-N, Tokuso Rebase Fast-T, Ufi Gel Hard-U) was investigated. Specimens relined with resin L were also evaluated. Materials and Methods: One hundred sixty cylinders (20 × 20 mm) of L denture base resin were processed, and the reline resins were packed on the prepared bonding surfaces using a split-mold (3.5 × 5.0 mm). Shear tests (0.5 mm/min) were performed on the specimens (n = 8) after polymerization (control), and after immersion in water at 37°C for 7, 90, and 180 days. All fractured surfaces were examined by scanning electron microscopy (SEM) to calculate the percentage of cohesive fracture (PCF). Shear data were analyzed with 2-way ANOVA and Tukey's test; Kruskall-Wallis test was used to analyze PCF data (α = 0.05). Results: After 90 days water immersion, an increase in the mean SBS was observed for U (11.13 to 16.53 MPa; p < 0.001) and T (9.08 to 13.24 MPa, p = 0.035), whereas resin L showed a decrease (21.74 MPa to 14.96 MPa; p < 0.001). The SBS of resins K (8.44 MPa) and N (7.98 MPa) remained unaffected. The mean PCF was lower than 32.6% for K, N, and T, and higher than 65.6% for U and L. Conclusions: Long-term water immersion did not adversely affect the bond of materials K, N, T, and U and decreased the values of resin L. Materials L and U failed cohesively, and K, N, and T failed adhesively. © 2007 by The American College of Prosthodontists.
Resumo:
Fracture of dentures is a common clinical finding in daily prosthodontic practice, resulting in great inconvenience to both patient and dentist. A satisfactory repair should be cost-effective, simple to perform, and quick; it should also match the original color and not cause distortion to the existing denture. Different repair materials, surface designs, and mechanical and chemical surface treatments have been recommended in order to obtain stronger repairs. This article reviews some of the available literature with regard to the most important factors that may influence the strength of denture repairs. © 2007 by The American College of Prosthodontists.
Resumo:
This study aimed to compare the microtensile bond strength of resin cement to alumina-reinforced feldspathic ceramic submitted to acid etching or chairside tribochemical silica coating. Ten blocks of Vitadur-α were randomly divided into 2 groups according to conditioning method: (1) etching with 9.6% hydrofluoric acid or (2) chairside tribochemical silica coating. Each ceramic block was luted to the corresponding resin composite block with the resin cement (Panavia F). Next, bar specimens were produced for microtensile testing. No significant difference was observed between the 2 experimental groups (Student t test, P> .05). Both surface treatments showed similar microtensile bond strength values.
Resumo:
In this work we discuss the strength of the trilinear Higgs boson coupling in composite models in a model independent way. The coupling is determined as a function of a very general ansatz for the fermionic self-energy, and turns out to be equal or smaller than the one of the Standard Model Higgs boson depending on the dynamics of the theory. © World Scientific Publishing Company.
Diametral tensile strength of dual-curing resin cements submitted exclusively to autopolymerization.
Resumo:
OBJECTIVES: To evaluate, at different times, the diametral tensile strength (DTS) of dual-curing resin cements that were not photopolymerized. METHOD AND MATERIALS: Equal amounts of base and catalyst pastes of Panavia F (Kuraray), Variolink II (Vivadent), Rely X (3M ESPE), and Enforce (Dentsply) were mixed and inserted into cylindrical molds (4 x 2 mm) (n = 10). Cements were not photopolymerized. DTS test was performed in a testing machine at 30 minutes, 1 hour, 24 hours, and 7 days. The specimens were stored in light-proof containers with distilled water at 37 degrees C until the time of assay. An autopolymerizing resin cement (Cement-It, Jeneric Pentron) and a zinc phosphate cement served as controls. One-way analysis of variance (ANOVA) and Tukey test were performed separately for each cement and for each time (P <.05). RESULTS: All cements showed an increase in DTS when tested at 1 and 24 hours. Tests at 24 hours and 7 days revealed no statistically significant differences. In all groups, the zinc phosphate cement had the lowest DTS mean values (2.1 MPa, 3.6 MPa, 6.5 MPa, and 6.9 MPa), while Cement-It (35.1 MPa, 33.6 MPa, 46.9 MPa, and 46.3 MPa) and Enforce (31.9 MPa, 31.7 MPa, 43.4 MPa, and 47.6 MPa) presented the highest DTS mean values. CONCLUSION: All cements presented maximal strength at 24 hours. The dual-curing resin cements, even when nonphotopolymerized, demonstrated higher DTS than the zinc phosphate cement and similar or lower values than the autopolymerizing resin cement.
Resumo:
The aim of this study was to evaluate the influence of different light-curing units on the tensile bond strength and microhardness of a composite resin (Filtek Z250 - 3M/ESPE). Conventional halogen (Curing Light 2500 - 3M/ESPE; CL) and two blue light emitting diode curing units (Ultraled - Dabi/Atlante; UL; Ultrablue IS - DMC; UB3 and UB6) were selected for this study. Different light intensities (670, 130, 300, and 600 mW/cm2, respectively) and different curing times (20s, 40s and 60s) were evaluated. Knoop microhardness test was performed in the area corresponding to the fractured region of the specimen. A total of 12 groups (n=10) were established and the specimens were prepared using a stainless steel mold composed by two similar parts that contained a cone-shaped hole with two diameters (8.0 mm and 5.0 mm) and thickness of 1.0 mm. Next, the specimens were loaded in tensile strength until fracture in a universal testing machine at a crosshead speed of 0.5 mm/min and a 50 kg load cell. For the microhardness test, the same matrix was used to fabricate the specimens (12 groups; n=5). Microhardness was determined on the surfaces that were not exposed to the light source, using a Shimadzu HMV-2 Microhardness Tester at a static load of 50 g for 30 seconds. Data were analyzed statistically by two-way ANOVA and Tukey's test (p<0.05). Regarding the individual performance of the light-curing units, there was similarity in tensile strength with 20-s and 40-s exposure times and higher tensile strength when a 60-s light-activation time was used. Regarding microhardness, the halogen lamp had higher results when compared to the LED units. For all light-curing units, the variation of light-exposure time did not affect composite microhardness. However, lower irradiances needed longer light-activation times to produce similar effect as that obtained with high-irradiance light-curing sources.
Resumo:
This study evaluated the effect of water-bath and microwave post-polymerization treatments on the flexural strength and Vickers hardness of four autopolymerizing reline resins (Duraliner II-D, Kooliner-K, Tokuso Rebase Fast-TR and Ufi Gel Hard C-UGH) and one heat-polymerized acrylic resin (Lucitone 550-L), processed using two polymerization cycles (short cycle - 90 minutes at 73°C and 100°C for 30 minutes; and long cycle - 9 hours at 71°C). For each material, thirty specimens (64 x 10 x 3.3 mm) were made and divided into 3 groups (n=10). Specimens were tested after: processing (control group); water-bath at 55°C for 10 minutes (reline materials) or 60 minutes (L); and microwave irradiation. Flexural strength tests were performed at a crosshead speed of 5 mm/min using a three-point bending device with a span of 50 mm. The flexural strengths values were calculated in MPa. One fragment of each specimen was submitted to Vickers hardness test. Data were analyzed by 2-way ANOVA followed by Tukey's HSD test (α=0.05). L microwaved specimens (short cycle) exhibited significantly higher flexural strength means than its respective control group (p<0.05). Water-bath promoted a significant increase (p<0.05) in flexural strength of K and L (long cycle). The hardness of the tested materials was not influenced by the post-polymerization treatments. Post-polymerization treatments could be used to improve the flexural strength of some materials tested.