958 resultados para coral reef ecosystem of Nansha Islands


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two of the major threats to coral reefs are increasing sea surface temperature and ocean acidification, both of which result from rising concentrations of atmospheric carbon dioxide (CO2). Recent evidence suggests that both increased water temperature and elevated levels of dissolved CO2 can change the behaviors of fishes in ways that reduce individual fitness, however the interacting effects of these variables are unknown. We used a fully factorial experiment to test the independent and interactive effects of temperature (3 levels: 28.5, 30, and 31.5 °C) and pCO2 (3 levels: averaging 420, 530, and 960 µatm) on food consumption and activity level of juvenile anemonefish Amphiprion melanopus (Bleeker 1852). Experimental levels were consistent with current-day ocean conditions and predictions for mid-century and late-century based on atmospheric CO2 projections. Sibling fish were reared for 21 days from the end of their larval phase in each of the nine treatments, at which time behavioral observations were conducted. Food consumption and foraging activity decreased at the highest temperature. In isolation, CO2 level did not significantly affect behavior; however, there was an interaction with temperature. While rearing at high temperature (31.5 °C) and control (420 µatm) or moderate (530 µatm) CO2 resulted in a reduction of food consumption and foraging activity, rearing at high temperature and high CO2 (960 µatm) resulted in an elevation in these behaviors. Maintaining food consumption and foraging activity in high temperature and CO2 conditions may reduce energy efficiency if the thermal optimum for food assimilation and growth has been exceeded. Maintaining foraging effort might increase predation vulnerability. These results suggest that changes in foraging behaviors caused by the interactive effects of increased SST and CO2 could have significant effects on the growth and survival of juvenile reef fishes by late century.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Labrador Sea is a basin with oceanic crust in its deep part. Bottom morphology of the Labrador Sea is rather complicated. Data of seismic profiling in this region indicate presence of numerous submarine mountains and hills, which are dominated by volcanic rocks. Some chemical and mineral characteristics of the rocks, in particular, high concentrations of alkalis and phosphorus, and presence of high-titanium augite, ilmenite, and devitrified glass enriched in K and Na, allow us to attribute them to K-Na subalkaline picrites typical for ocean islands, seamounts, and oceanic plateaus. Rocks of the K-Na subalkaline series usually form submarine basements and subaerial volcanoes of ocean islands, seamounts, and oceanic plateaus. Thus, the suggestion on formation of the highs on the continental crust is not confirmed by petrographic data, which require a refinement of the tectonic model of the northern part of the Labrador Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As an effect of anthropogenic CO2 emissions, the chemistry of the world's oceans is changing. Understanding how this will affect marine organisms and ecosystems are critical in predicting the impacts of this ongoing ocean acidification. Work on coral reef fishes has revealed dramatic effects of elevated oceanic CO2 on sensory responses and behavior. Such effects may be widespread but have almost exclusively been tested on tropical reef fishes. Here we test the effects elevated CO2 has on the reproduction and early life history stages of a temperate coastal goby with paternal care by allowing goby pairs to reproduce naturally in an aquarium with either elevated (ca 1400 µatm) CO2 or control seawater (ca 370 µatm CO2). Elevated CO2 did not affect the occurrence of spawning nor clutch size, but increased embryonic abnormalities and egg loss. Moreover, we found that elevated CO2 significantly affected the phototactic response of newly hatched larvae. Phototaxis is a vision-related fundamental behavior of many marine fishes, but has never before been tested in the context of ocean acidification. Our findings suggest that ocean acidification affects embryonic development and sensory responses in temperate fishes, with potentially important implications for fish recruitment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many marine biogeographic realms, bioeroding sponges dominate the internal bioerosion of calcareous substrates such as mollusc beds and coral reef framework. They biochemically dissolve part of the carbonate and liberate so-called sponge chips, a process that is expected to be facilitated and accelerated in a more acidic environment inherent to the present global change. The bioerosion capacity of the demosponge Cliona celata Grant, 1826 in subfossil oyster shells was assessed via alkalinity anomaly technique based on 4 days of experimental exposure to three different levels of carbon dioxide partial pressure (pCO2) at ambient temperature in the cold-temperate waters of Helgoland Island, North Sea. The rate of chemical bioerosion at present-day pCO2 was quantified with 0.08-0.1 kg/m**2/year. Chemical bioerosion was positively correlated with increasing pCO2, with rates more than doubling at carbon dioxide levels predicted for the end of the twenty-first century, clearly confirming that C. celata bioerosion can be expected to be enhanced with progressing ocean acidification (OA). Together with previously published experimental evidence, the present results suggest that OA accelerates sponge bioerosion (1) across latitudes and biogeographic areas, (2) independent of sponge growth form, and (3) for species with or without photosymbionts alike. A general increase in sponge bioerosion with advancing OA can be expected to have a significant impact on global carbonate (re)cycling and may result in widespread negative effects, e.g. on the stability of wild and farmed shellfish populations, as well as calcareous framework builders in tropical and cold-water coral reef ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Material cored during the Integrated Ocean Drilling Program (IODP) Expedition 310 'Tahiti Sea Level' revealed that the fossil reef systems around Tahiti are composed of two major stratigraphic sequences: (i) a last deglacial sequence; and (ii) an older Pleistocene sequence. The older Pleistocene carbonate sequence is composed of reef deposits associated with volcaniclastic sediments and was preserved in Hole 310-M0005D drilled off Maraa. Within an approximately 70-m-thick older Pleistocene sequence (33.22-101.93 m below seafloor; 92.85-161.56 m below present sealevel) in this hole, 11 depositional units are defined by lithological changes, sedimentological features, and paleontological characteristics and are numbered sequentially from the top of the hole downward (Subunits P1-P11). Paleowater depths inferred from nongeniculate coralline algae, combined with those determined by using corals and larger foraminifers, suggest two major sealevel rises during the deposition of the older Pleistocene sequence. Of these, the second sealevel rise is associated with an intervening sealevel drop. It is likely that the second sealevel rise corresponds to that during Termination II (TII, the penultimate deglaciation, from Marine Isotope Stages 6 to 5e). Therefore, the intervening sealevel drop can be correlated with that known as the 'sealevel reversal' during TII. Because there are limited data on the Pleistocene reef systems in the tropical South Pacific Ocean, this study provides important information about Pleistocene sealevel history, the evolution of coral reef ecosystems, and the responses of coral reefs to Quaternary climate changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In volcanic islands, the rainfall regime and its torrential nature, together with the steep slopes and the soil types present are considered to be some of the main factors affecting forest hydrology and soil conservation. In such environments, rain regime is generally irregular and characterized by short and intense rainfalls, which could cause destructive flows at times, followed by long periods of rain absence. The volcanic nature of these islands have as a direct resultant steep slopes which influences the runoff volume and speed, as well as the amount of topsoil susceptible to be detached and transported downstream. The soil type also affects the susceptibility to erosion processes. Andisols are the most typical soil on volcanic islands. Their particularities derive their mineral constituents, called short-range-order products, which provide these soils with an increased structural stability, which in turn reduces their susceptibility to erosion. However, the land use changes and the environmental factors such as rain regime and steep slopes may be determinant factor in destabilizing these soils and ultimately a cause for soil erosion and runoffs, which become a threat to the population downstream. Green barriers have been traditionally used to prevent or reduce these processes, also to enhance the dew effect and the fog water collection, and as a firebreak which acts as a barrier to slow or stop the progress of a wildfire. Wooded species present and subsequently their performance have a major influence on their effectiveness. The use of this natural erosion and fire control methods on volcanic islands is discussed in this paper.