851 resultados para computer vision face recognition detection voice recognition sistemi biometrici iOS
Resumo:
Augmented Reality (AR) systems which use optical tracking with fiducial marker for registration have had an important role in popularizing this technology, since only a personal computer with a conventional webcam is required. However, in most these applications, the virtual elements are shown only in the foreground a real element does not occlude a virtual one. The method presented enables AR environments based on fiducial markers to support mutual occlusion between a real element and many virtual ones, according to the elements position (depth) in the environment. © 2012 IEEE.
Resumo:
Dengue virus is a mosquito-borne flavivirus that has a large impact in global health. It is considered as one of the medically important arboviruses, and developing a preventive or therapeutic solution remains a top priority in the medical and scientific community. Drug discovery programs for potential dengue antivirals have increased dramatically over the last decade, largely in part to the introduction of high-throughput assays. In this study, we have developed an image-based dengue high-throughput/high-content assay (HT/HCA) using an innovative computer vision approach to screen a kinase-focused library for anti-dengue compounds. Using this dengue HT/HCA, we identified a group of compounds with a 4-(1-aminoethyl)-N-methylthiazol-2-amine as a common core structure that inhibits dengue viral infection in a human liver-derived cell line (Huh-7.5 cells). Compounds CND1201, CND1203 and CND1243 exhibited strong antiviral activities against all four dengue serotypes. Plaque reduction and time-of-addition assays suggests that these compounds interfere with the late stage of viral infection cycle. These findings demonstrate that our image-based dengue HT/HCA is a reliable tool that can be used to screen various chemical libraries for potential dengue antiviral candidates. © 2013 Cruz et al.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Automatic video surveillance system has been a frequent topic of research due to the large number of promising applications. In this research, we developed a tracking and counting people system, as well as suspicious activities detector. The model tracks individual objects as they pass through the field of vision of the camera using vision algorithms to classify the activities of each person, and according to this features, detect dangerous situations. This dissertation includes a review of several techniques trying to develop a robust and low computacional costs system to be used in glass door barrier turnstiles avoiding fraud
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Televisão Digital: Informação e Conhecimento - FAAC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Inspection for corrosion of gas storage spheres at the welding seam lines must be done periodically. Until now this inspection is being done manually and has a high cost associated to it and a high risk of inspection personel injuries. The Brazilian Petroleum Company, Petrobras, is seeking cost reduction and personel safety by the use of autonomous robot technology. This paper presents the development of a robot capable of autonomously follow a welding line and transporting corrosion measurement sensors. The robot uses a pair of sensors each composed of a laser source and a video camera that allows the estimation of the center of the welding line. The mechanical robot uses four magnetic wheels to adhere to the sphere's surface and was constructed in a way that always three wheels are in contact with the sphere's metallic surface which guarantees enough magnetic atraction to hold the robot in the sphere's surface all the time. Additionally, an independently actuated table for attaching the corrosion inspection sensors was included for small position corrections. Tests were conducted at the laboratory and in a real sphere showing the validity of the proposed approach and implementation.
Resumo:
Laryngeal squamous cell carcinoma is one of the most common malignant neoplasms of the head and neck. In Brazil, laryngeal tumors represent 2% of all cancers and are associated with approximately 3,000 deaths annually. Human papillomavirus (HPV) has been reported to play an important role in the etiology of laryngeal cancer. The aim of the present study was to evaluate the expression of p53, p27, and Mdm2 in laryngeal carcinomas. Sixty-three larynx biopsies were selected for the study, including 9 in situ laryngeal carcinomas, 27 laryngeal carcinomas without metastasis and 27 laryngeal carcinomas with metastasis. Twenty-seven cervical lymph nodes from patients with metastatic lesions were also evaluated. The expression levels of p53, p27, and Mdm2 were assessed by immunohistochemistry using a computer-assisted system. HPV detection and typing were performed using PCR, and the HPV types that were evaluated included HPV 6, 11, 16, 18, 31 and 33. Out of 63 patients, 53 (84.1%) were positive for beta-globin (internal control), and 10 (15.9%) were beta-globin negative and therefore excluded from the evaluation. Thus, 7 (13.2%) out of 53 patients were HPV positive, and 46 (86.8%) out of 53 patients were HPV negative. Statistically significant differences (p < 0.05) in Mdm2 expression levels were observed in the in situ laryngeal carcinoma samples compared with the laryngeal carcinoma samples with metastasis. No statistically significant differences (p > 0.05) in either p53 or p27 expression levels were detected. These findings suggest that Mdm2 may be associated with the invasiveness and aggressiveness of laryngeal carcinomas.
Resumo:
Bilayer segmentation of live video in uncontrolled environments is an essential task for home applications in which the original background of the scene must be replaced, as in videochats or traditional videoconference. The main challenge in such conditions is overcome all difficulties in problem-situations (e. g., illumination change, distract events such as element moving in the background and camera shake) that may occur while the video is being captured. This paper presents a survey of segmentation methods for background substitution applications, describes the main concepts and identifies events that may cause errors. Our analysis shows that although robust methods rely on specific devices (multiple cameras or sensors to generate depth maps) which aid the process. In order to achieve the same results using conventional devices (monocular video cameras), most current research relies on energy minimization frameworks, in which temporal and spacial information are probabilistically combined with those of color and contrast.
Resumo:
Texture image analysis is an important field of investigation that has attracted the attention from computer vision community in the last decades. In this paper, a novel approach for texture image analysis is proposed by using a combination of graph theory and partially self-avoiding deterministic walks. From the image, we build a regular graph where each vertex represents a pixel and it is connected to neighboring pixels (pixels whose spatial distance is less than a given radius). Transformations on the regular graph are applied to emphasize different image features. To characterize the transformed graphs, partially self-avoiding deterministic walks are performed to compose the feature vector. Experimental results on three databases indicate that the proposed method significantly improves correct classification rate compared to the state-of-the-art, e.g. from 89.37% (original tourist walk) to 94.32% on the Brodatz database, from 84.86% (Gabor filter) to 85.07% on the Vistex database and from 92.60% (original tourist walk) to 98.00% on the plant leaves database. In view of these results, it is expected that this method could provide good results in other applications such as texture synthesis and texture segmentation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Recently there has been a considerable interest in dynamic textures due to the explosive growth of multimedia databases. In addition, dynamic texture appears in a wide range of videos, which makes it very important in applications concerning to model physical phenomena. Thus, dynamic textures have emerged as a new field of investigation that extends the static or spatial textures to the spatio-temporal domain. In this paper, we propose a novel approach for dynamic texture segmentation based on automata theory and k-means algorithm. In this approach, a feature vector is extracted for each pixel by applying deterministic partially self-avoiding walks on three orthogonal planes of the video. Then, these feature vectors are clustered by the well-known k-means algorithm. Although the k-means algorithm has shown interesting results, it only ensures its convergence to a local minimum, which affects the final result of segmentation. In order to overcome this drawback, we compare six methods of initialization of the k-means. The experimental results have demonstrated the effectiveness of our proposed approach compared to the state-of-the-art segmentation methods.
Resumo:
[ES] Los erizos de mar han servido como modelo prototípico de organismo en el desarrollo de la Biología. La irrupción de este animal como especie invasora en los fondos canarios, combinada con el éxito reproductivo que ha tenido en nuestras aguas, ha creado un problema medioambiental importante que se ha intentado atajar con la puesta en marcha de proyectos e iniciativas orientados a su erradicación (matanzas masivas) o su contención con intentos de estimular su explotación comercial para uso gastronómico. En el transcurso de este trabajo se pretende explorar la robustez con la que se pueden clasificar visualmente diferentes tipos de erizos (principalmente Diadema antillarumy y Erizos autóctonos) a partir tanto de imágenes estáticas como de secuencias de vídeo para evaluar si, mediante el empleo de técnicas de visión por computador, es posible resolver estas tareas mediante la inspección automática de vídeos e imágenes.