987 resultados para community stability
Resumo:
This chapter presents the stability analysis based on bifurcation theory of the distribution static compensator (DSTATCOM) operating both in current control mode as in voltage control mode. The bifurcation analysis allows delimiting the operating zones of nonlinear power systems and hence the computation of these boundaries is of interest for practical design and planning purposes. Suitable mathematical representations of the DSTATCOM are proposed to carry out the bifurcation analyses efficiently. The stability regions in the Thevenin equivalent plane are computed for different power factors at the Point of Common Coupling (PCC). In addition, the stability regions in the control gain space are computed, and the DC capacitor and AC capacitor impact on the stability are analyzed in detail. It is shown through bifurcation analysis that the loss of stability in the DSTATCOM is in general due to the emergence of oscillatory dynamics. The observations are verified through detailed simulation studies.
Resumo:
A virtual power system can be interfaced with a physical system to form a power hardware-in-the-loop (PHIL) simulation. In this scheme, the virtual system can be simulated in a fast parallel processor to provide near real-time outputs, which then can be interfaced to a physical hardware that is called the hardware under test (HuT). Stable operation of the entire system, while maintaining acceptable accuracy, is the main challenge of a PHIL simulation. In this paper, after an extended stability analysis for voltage and current type interfaces, some guidelines are provided to have a stable PHIL simulation. The presented analysis have been evaluated by performing several experimental tests using a Real Time Digital Simulator (RTDS™) and a voltage source converter (VSC). The practical test results are consistent with the proposed analysis.
Resumo:
Strain-based failure criteria have several advantages over stress-based failure criteria: they can account for elastic and inelastic strains, they utilise direct, observables effects instead of inferred effects (strain gauges vs. stress estimates), and model complete stress-strain curves including pre-peak, non-linear elasticity and post-peak strain weakening. In this study, a strain-based failure criterion derived from thermodynamic first principles utilising the concepts of continuum damage mechanics is presented. Furthermore, implementation of this failure criterion into a finite-element simulation is demonstrated and applied to the stability of underground mining coal pillars. In numerical studies, pillar strength is usually expressed in terms of critical stresses or stress-based failure criteria where scaling with pillar width and height is common. Previous publications have employed the finite-element method for pillar stability analysis using stress-based failure criterion such as Mohr-Coulomb and Hoek-Brown or stress-based scalar damage models. A novel constitutive material model, which takes into consideration anisotropy as well as elastic strain and damage as state variables has been developed and is presented in this paper. The damage threshold and its evolution are strain-controlled, and coupling of the state variables is achieved through the damage-induced degradation of the elasticity tensor. This material model is implemented into the finite-element software ABAQUS and can be applied to 3D problems. Initial results show that this new material model is capable of describing the non-linear behaviour of geomaterials commonly observed before peak strength is reached as well as post-peak strain softening. Furthermore, it is demonstrated that the model can account for directional dependency of failure behaviour (i.e. anisotropy) and has the potential to be expanded to environmental controls like temperature or moisture.
Resumo:
This study focuses on designing a community environment education center (CEEC) for Chillingham, as a hub for community transition to sustainability, redressing social fragmentation, youth unemployment, a high eco-footprint and economic rural decline due to globalisation. The ecologically sustainable development framework was delivered by integrating environment education and community development through project-based experiential learning. The development of Chillingham Community Centre involved case study research and incorporated participatory design charrettes, transformative learning, eco-positive development and community-public-private partnerships. This process evolved from community strategic planning in a small rural village buffering world heritage rainforests impacted by a rapidly expanding urban conurbation on Australia’s east coast. This community space encompasses socio-environmental flows connecting people to each other and the ecoscape to grow natural capital, community cohesion and empower eco-governance. Modelling passive solar design, on-site renewable energy/water/nutrient cycling, community garden/market and environment education programs sowed the seeds for a green local economy, demonstrating community capacity to participate in transition to sustainability. A small rural community can demonstrate to other communities that a CEEC enables people to meet their socio-environmental and economic needs locally and sustainably. The ecologically sustainable solution is holistic, all settlements need to be richly biodiverse, locally specific and globally wise.
Resumo:
This study addresses the under-researched area of community sport in rurally isolated contexts. Data were gathered using semi-structured interviews with teachers, children, parents, and local community members from a small township in an isolated North Queensland region. The data indicate that community sport for young people is circumstantially difficult in some regional centres, but is none-the-less viewed differently by different sectors of the community. There is much value ascribed to sport as part of the social and cultural capital of the area however, it appears that community opinion is divided on the quality of sport experiences available with the young people of the community being particularly critical of the facilities, equipment, and the level of service from sports organisations in larger towns and cities.
Resumo:
Modern power systems have become more complex due to the growth in load demand, the installation of Flexible AC Transmission Systems (FACTS) devices and the integration of new HVDC links into existing AC grids. On the other hand, the introduction of the deregulated and unbundled power market operational mechanism, together with present changes in generation sources including connections of large renewable energy generation with intermittent feature in nature, have further increased the complexity and uncertainty for power system operation and control. System operators and engineers have to confront a series of technical challenges from the operation of currently interconnected power systems. Among the many challenges, how to evaluate the steady state and dynamic behaviors of existing interconnected power systems effectively and accurately using more powerful computational analysis models and approaches becomes one of the key issues in power engineering. The traditional computing techniques have been widely used in various fields for power system analysis with varying degrees of success. The rapid development of computational intelligence, such as neural networks, fuzzy systems and evolutionary computation, provides tools and opportunities to solve the complex technical problems in power system planning, operation and control.
Resumo:
Problem, research strategy and findings: On January 10, 2011, the town of Grantham, Queensland (Australia), was inundated with a flash flood in which 12 of the town's 370 residents drowned. The overall damage bill in Queensland was AUD∃2.38 billion (USD∃2.4 billion) with 35 deaths, and more than three-quarters of the state was declared a flood disaster zone. In this study, we focus on the unusual and even rare decision to relocate Grantham in March 2011. The Lockyer Valley Regional Council (LVRC) acquired a 377-hectare (932-acre) site to enable a voluntary swap of equivalent-sized lots. In addition, planning regulations were set aside to streamline the relocation of a portion of the town. We review the natural hazard literature as it relates to community relocation, state and local government documents related to Grantham, and reports and newspaper articles related to the flood. We also analyze data from interviews with key stakeholders. We document the process of community relocation, assess the relocation process in Grantham against best practice, examine whether the process of community relocation can be upscaled and if the Grantham relocation is an example of good planning or good politics. Takeaway for practice: Our study reveals two key messages for practice. Community relocation (albeit a small one) is possible, and the process can be done quickly; some Grantham residents moved into their new, relocated homes in December 2012, just 11 months after the flood. Moreover, the role of existing planning regulations can be a hindrance to quick action; political leadership, particularly at the local level, is key to implementing the relocation.
Resumo:
This project develops the required guidelines to assure stable and accurate operation of Power-Hardware-in-the-Loop implementations. The proposals of this research have been theoretically analyzed and practically examined using a Real-Time Digital Simulator. In this research, the interaction between software simulated power network and the physical power system has been studied. The conditions for different operating regimes have been derived and the corresponding analyses have been presented.