910 resultados para automatic programming
Resumo:
The paper presents a constructive heuristic algorithm (CHA) for solving directly the long-term transmission-network-expansion-planning (LTTNEP) problem using the DC model. The LTTNEP is a very complex mixed-integer nonlinear-programming problem and presents a combinatorial growth in the search space. The CHA is used to find a solution for the LTTNEP problem of good quality. A sensitivity index is used in each step of the CHA to add circuits to the system. This sensitivity index is obtained by solving the relaxed problem of LTTNEP, i.e. considering the number of circuits to be added as a continuous variable. The relaxed problem is a large and complex nonlinear-programming problem and was solved through the interior-point method (IPM). Tests were performed using Garver's system, the modified IEEE 24-Bus system and the Southern Brazilian reduced system. The results presented show the good performance of IPM inside the CHA.
Resumo:
This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The increase of computing power of the microcomputers has stimulated the building of direct manipulation interfaces that allow graphical representation of Linear Programming (LP) models. This work discusses the components of such a graphical interface as the basis for a system to assist users in the process of formulating LP problems. In essence, this work proposes a methodology which considers the modelling task as divided into three stages which are specification of the Data Model, the Conceptual Model and the LP Model. The necessity for using Artificial Intelligence techniques in the problem conceptualisation and to help the model formulation task is illustrated.
Resumo:
In this paper, we consider a vector optimization problem where all functions involved are defined on Banach spaces. We obtain necessary and sufficient criteria for optimality in the form of Karush-Kuhn-Tucker conditions. We also introduce a nonsmooth dual problem and provide duality theorems.
Resumo:
The acquisition and update of Geographic Information System (GIS) data are typically carried out using aerial or satellite imagery. Since new roads are usually linked to georeferenced pre-existing road network, the extraction of pre-existing road segments may provide good hypotheses for the updating process. This paper addresses the problem of extracting georeferenced roads from images and formulating hypotheses for the presence of new road segments. Our approach proceeds in three steps. First, salient points are identified and measured along roads from a map or GIS database by an operator or an automatic tool. These salient points are then projected onto the image-space and errors inherent in this process are calculated. In the second step, the georeferenced roads are extracted from the image using a dynamic programming (DP) algorithm. The projected salient points and corresponding error estimates are used as input for this extraction process. Finally, the road center axes extracted in the previous step are analyzed to identify potential new segments attached to the extracted, pre-existing one. This analysis is performed using a combination of edge-based and correlation-based algorithms. In this paper we present our approach and early implementation results.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A combined methodology consisting of successive linear programming (SLP) and a simple genetic algorithm (SGA) solves the reactive planning problem. The problem is divided into operating and planning subproblems; the operating subproblem, which is a nonlinear, ill-conditioned and nonconvex problem, consists of determining the voltage control and the adjustment of reactive sources. The planning subproblem consists of obtaining the optimal reactive source expansion considering operational, economical and physical characteristics of the system. SLP solves the optimal reactive dispatch problem related to real variables, while SGA is used to determine the necessary adjustments of both the binary and discrete variables existing in the modelling problem. Once the set of candidate busbars has been defined, the program implemented gives the location and size of the reactive sources needed, if any, to maintain the operating and security constraints.
Resumo:
Mathematical programming problems with equilibrium constraints (MPEC) are nonlinear programming problems where the constraints have a form that is analogous to first-order optimality conditions of constrained optimization. We prove that, under reasonable sufficient conditions, stationary points of the sum of squares of the constraints are feasible points of the MPEC. In usual formulations of MPEC all the feasible points are nonregular in the sense that they do not satisfy the Mangasarian-Fromovitz constraint qualification of nonlinear programming. Therefore, all the feasible points satisfy the classical Fritz-John necessary optimality conditions. In principle, this can cause serious difficulties for nonlinear programming algorithms applied to MPEC. However, we show that most feasible points do not satisfy a recently introduced stronger optimality condition for nonlinear programming. This is the reason why, in general, nonlinear programming algorithms are successful when applied to MPEC.
Resumo:
Semi-automatic building detection and extraction is a topic of growing interest due to its potential application in such areas as cadastral information systems, cartographic revision, and GIS. One of the existing strategies for building extraction is to use a digital surface model (DSM) represented by a cloud of known points on a visible surface, and comprising features such as trees or buildings. Conventional surface modeling using stereo-matching techniques has its drawbacks, the most obvious being the effect of building height on perspective, shadows, and occlusions. The laser scanner, a recently developed technological tool, can collect accurate DSMs with high spatial frequency. This paper presents a methodology for semi-automatic modeling of buildings which combines a region-growing algorithm with line-detection methods applied over the DSM.
Resumo:
This paper presents a new methodology to evaluate in a predictive way the reliability of distribution systems, considering the impact of automatic recloser switches. The developed algorithm is based on state enumeration techniques with Markovian models and on the minimal cut set theory. Some computational aspects related with the implementation of the proposed algorithm in typical distribution networks are also discussed. The description of the proposed approach is carried out using a sample test system. The results obtained with a typical configuration of a Brazilian system (EDP Bandeirante Energia S.A.) are presented and discussed.
Resumo:
This paper presents a dynamic programming approach for semi-automated road extraction from medium-and high-resolution images. This method is a modified version of a pre-existing dynamic programming method for road extraction from low-resolution images. The basic assumption of this pre-existing method is that roads manifest as lines in low-resolution images (pixel footprint> 2 m) and as such can be modeled and extracted as linear features. On the other hand, roads manifest as ribbon features in medium- and high-resolution images (pixel footprint ≤ 2 m) and, as a result, the focus of road extraction becomes the road centerlines. The original method can not accurately extract road centerlines from medium- and high- resolution images. In view of this, we propose a modification of the merit function of the original approach, which is carried out by a constraint function embedding road edge properties. Experimental results demonstrated the modified algorithm's potential in extracting road centerlines from medium- and high-resolution images.
Resumo:
Several kinds of research in road extraction have been carried out in the last 6 years by the Photogrammetry and Computer Vision Research Group (GPF&VC - Grupo de Pesquisa em Fotogrametria e Visão Computacional). Several semi-automatic road extraction methodologies have been developed, including sequential and optimizatin techniques. The GP-F&VC has also been developing fully automatic methodologies for road extraction. This paper presents an overview of the GP-F&VC research in road extraction from digital images, along with examples of results obtained by the developed methodologies.
Resumo:
This article presents an automatic methodology for extraction of road seeds from high-resolution aerial images. The method is based on a set of four road objects and another set of connection rules among road objects. Each road object is a local representation of an approximately straight road fragment and its construction is based on a combination of polygons describing all relevant image edges, according to some rules embodying road knowledge. Each one of the road seeds is composed by a sequence of connected road objects, in which each sequence of this type can be geometrically structured as a chain of contiguous quadrilaterals. Experiments carried out with high-resolution aerial images showed that the proposed methodology is very promising in extracting road seeds. This article presents the fundamentals of the method and the experimental results, as well.