1000 resultados para antiferromagnetic Heisenberg films


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the effect of post- deposition annealing on the composition and electrical properties of alumina (Al2O3) thin films. Al2O3 were deposited on n-type Si < 100 >. substrates by dc reactive magnetron sputtering. The films were subjected to post- deposition annealing at 623, 823 and 1023 K in vacuum. X-ray photoelectron spectroscopy results revealed that the composition improved with post- deposition annealing, and the film annealed at 1023 K became stoichiometric with an O/Al atomic ratio of 1.49. Al/Al2O3/Si metal-oxide-semiconductor (MOS) structures were then fabricated, and a correlation between the dielectric constant epsilon(r) and interface charge density Q(i) with annealing conditions were studied. The dielectric constant of the Al2O3 thin films increased to 9.8 with post- deposition annealing matching the bulk value, whereas the oxide charge density decreased to 3.11 x 10(11) cm(-2.) Studies on current-voltage IV characteristics indicated ohmic and Schottky type of conduction at lower electric fields (<0.16 MV cm(-1)) and space charge limited conduction at higher electric fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The healing times for the growth of thin films on patterned substrates are studied using simulations of two discrete models of surface growth: the Family model and the Das Sarma-Tamborenea (DT) model. The healing time, defined as the time at which the characteristics of the growing interface are ``healed'' to those obtained in growth on a flat substrate, is determined via the study of the nearest-neighbor height difference correlation function. Two different initial patterns are considered in this work: a relatively smooth tent-shaped triangular substrate and an atomically rough substrate with singlesite pillars or grooves. We find that the healing time of the Family and DT models on aL x L triangular substrate is proportional to L-z, where z is the dynamical exponent of the models. For the Family model, we also analyze theoretically, using a continuum description based on the linear Edwards-Wilkinson equation, the time evolution of the nearest-neighbor height difference correlation function in this system. The correlation functions obtained from continuum theory and simulation are found to be consistent with each other for the relatively smooth triangular substrate. For substrates with periodic and random distributions of pillars or grooves of varying size, the healing time is found to increase linearly with the height (depth) of pillars (grooves). We show explicitly that the simulation data for the Family model grown on a substrate with pillars or grooves do not agree with results of a calculation based on the continuum Edwards-Wilkinson equation. This result implies that a continuum description does not work when the initial pattern is atomically rough. The observed dependence of the healing time on the substrate size and the initial height (depth) of pillars (grooves) can be understood from the details of the diffusion rule of the atomistic model. The healing time of both models for pillars is larger than that for grooves with depth equal to the height of the pillars. The calculated healing time for both Family and DT models is found to depend on how the pillars and grooves are distributed over the substrate. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) thin films were deposited onto p-Si substrates held at room temperature by reactive Direct Current (DC) magnetron sputtering at various sputter powers in the range 80-200W. The as-deposited TiO2 films were annealed at a temperature of 1023K. The post-annealed films were characterized for crystallographic structure, chemical binding configuration, surface morphology and optical absorption. The electrical and dielectric properties of Al/TiO2/p-Si structure were determined from the capacitance-voltage and current-voltage characteristics. X-ray diffraction studies confirmed that the as-deposited films were amorphous in nature. After post-annealing at 1023K, the films formed at lower powers exhibited anatase phase, where as those deposited at sputter powers >160W showed the mixed anatase and rutile phases of TiO2. The surface morphology of the films varied significantly with the increase of sputter power. The electrical and dielectric properties on the air-annealed Al/TiO2/p-Si structures were studied. The effect of sputter power on the electrical and dielectric characteristics of the structure of Al/TiO2/p-Si (metal-insulator-semiconductor) was systematically investigated. Copyright (c) 2014 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer nanocomposites constitute an important class of materials whose properties depend on the state of dispersion of the nanoparticles in the polymer matrix. Here we report the first observations of confinement-induced enhancement of dispersion in nanoparticle-polymer blend films. Systematic variation in the dispersion of nanoparticles with confinement for various compositions and matrix polymer chain dimensions has been observed. For fixed composition, strong reduction in glass transition temperature, T-g, is observed with decreasing blend-film thickness. The enhanced dispersion occurs without altering the polymer-particle interactions and seems to be driven by enhanced matrix-chain orientation propensity and a tendency to minimize the density gradients within the matrix. This implies the existence of two different mechanisms in polymer nanocomposites, which determines their state of dispersion and glass transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a hybrid-polymer nanocomposite film, based on polyvinyl butyral/amino-silane functionalized nano alumina, was fabricated by melt processing. The calcium degradation measurements suggest the functionalized nanocomposite films exhibit higher resistance towards moisture penetration as compared to the neat alumina loaded films. Thermal stability, mechanical strength, and contact angle studies of the composites were also conducted to evaluate the performance of the functionalized alumina loaded films. These nanocomposite films were encapsulated over Al/P3HT/ITO Schottky structured device. The changes observed in the current density of the devices to the applied voltage before and after accelerated aging conditions are presented. The nanocomposite with functionalized alumina films exhibits 50% change in current density, which is superior to that attained with neat and non-functionalized films. POLYM. COMPOS., 35:1426-1435, 2014. (c) 2013 Society of Plastics Engineers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transparent conducting ZnO films were prepared at substrate temperature 400 degrees C with different film thicknesses by nebulizer spray pyrolysis method on glass substrates. XRD studies reveal that the films are polycrystalline in nature having hexagonal crystal structure with preferred grain orientations along (0 0 2) and (1 0 1) directions. The crystallite size increases along (0 0 2) plane with the thickness increase and attains a maximum 109 nm for 913 nm film thickness. Analysis of structural parameters indicates that the films having thickness 913 nm are found to have minimum dislocation density and strain values. The HRSEM measurements show that the surface morphology of the films also changes with film thickness. EDAX estimates the average atomic percentage ratio of Zn and O in the ZnO films. Optical studies reveal the band gap energy decrease from 3.27 to 3.14 eV with increase of film thickness. Room temperature PL spectra show the near-band-edge emission and deep-level emission due to the presence of defects in the ZnO thin films. Impedance spectroscopy analysis indicates that grain boundary resistance decreases with the increasing ammonia concentration up to 500 ppm and the maximum sensitivity is found to be 1.7 for 500 ppm of ammonia. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this investigation transparent conducting properties of as-deposited and annealed ZnO:Sn:F films deposited using different spray flux density by changing the solvent volume (10 mL, 20 mL ... 50 mL) of the starting solutions have been studied and reported. The structural analyses of the films indicate that all the films have hexagonal wurtzite structure of ZnO with preferential orientation along (002) plane irrespective of the solvent volume and annealing treatment whereas, the overall crystalline quality of the films is found to be enhanced with the increase in solvent volume as well as with annealing. This observed enhancement is strongly supported by the optical and surface morphological results. From the measurements of electrical parameters, it is seen that, the annealed films exhibit better electrical properties compared to the as-deposited ones. Annealing has caused agglomeration of grains as confirmed by the surface morphological studies. Also, the annealing process has led to an improvement in the optical transparency as well as band gap. It is found from the analyses of the characteristics of the as- deposited and annealed films that the annealed film deposited from starting solution having solvent volume of 50 mL is optimal in all respects, as it possesses all the desirable characteristics including the quality factor (1.60 x 10(-4) (Omega/sq.)(-1)). (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differences in gene expression of human bone marrow stromal cells (hBMSCs) during culture in three-dimensional (3D) nanofiber scaffolds or on two-dimensional (2D) films were investigated via pathway analysis of microarray mRNA expression profiles. Previous work has shown that hBMSC culture in nanofiber scaffolds can induce osteogenic differentiation in the absence of osteogenic supplements (OS). Analysis using ontology databases revealed that nanofibers and OS regulated similar pathways and that both were enriched for TGF-beta and cell-adhesion/ECM-receptor pathways. The most notable difference between the two was that nanofibers had stronger enrichment for cell-adhesion/ECM-receptor pathways. Comparison of nanofibers scaffolds with flat films yielded stronger differences in gene expression than comparison of nanofibers made from different polymers, suggesting that substrate structure had stronger effects on cell function than substrate polymer composition. These results demonstrate that physical (nanofibers) and biochemical (OS) signals regulate similar ontological pathways, suggesting that these cues use similar molecular mechanisms to control hBMSC differentiation. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current study, amino silane functionalized cenosphere particles was used as a reinforcing filler in poly(vinyl butyral) matrix and were made by melt blending. The changes observed in the dielectric performance of the composite films with varying weight percentage of cenosphere particle in the matrix were investigated. The dielectric property and impedance spectroscopy were evaluated as a function of applied frequency in the range of 50 Hz to 5 MHz. It is observed that, because of orientation polarization of the PVB polymer, the permittivity and impedance decrease, whereas conductivity increases. Tangent loss graph indicates that the property of the matrix is associated with geometrical fill factor and the lowest quality factor. Therefore, above 10 kHz, these composites can be considered as dielectric loss-less material. (C) 2013 Society of Plastics Engineers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earth abundant alternative chalcopyrite Cu2CoSnS4 (CCTS) thin films were deposited by a facile sol-gel process onto larger substrates. Temperature dependence of the process control of deposition and desired phase formations was studied in detail. Films were analyzed for complete transformation from amorphous to polycrystalline, with textured structures for stannite phase, as reflected from the X-ray diffraction and with nearly stoichiometric compositions of Cu:Co:Sn:S = 2:0:1:0:1:0:4:0 from EDAX analysis. Morphological investigations revealed that the CCTS films with larger grains, on the order of its thickness, were synthesized at higher temperature of 500 degrees C. The optimal band gap for application in photovoltaics was estimated to be 1.4 eV. Devices with SLG/CCTS/Al geometry were fabricated for real time demonstration of photoconductivity under A.M 1.5 G solar and 1064 rim infrared laser illuminations. A photodetector showed one order current amplification from similar to 1.9 X 10(-6) A in the dark to 2.2 x 10(-5) A and 9.8 X 10(-6) A under A.M 1.5 G illumination and 50 mW cm(-2) IR laser, respectively. Detector sensitivity, responsivity, external quantum efficiency, and gain were estimated as 4.2, 0.12 A/W, 14.74% and 14.77%, respectively, at 50 mW cm(-2) laser illuminations. An ON and OFF ratio of 2.5 proved that CCTS can be considered as a potential absorber in low cost photovoltaics applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An organic-aqueous interfacial reaction at room temperature has been employed to synthesize large-area self-assembled films consisting of PbSe single crystallites. The use of the films for the low-cost fabrication of IR-photodetectors has been explored. (111)-oriented single crystallites of PbSe self-assemble to form robust large-area films. The near-infrared photoresponse of the film measured at room temperature showed large responsivity and gain owing to trap-associated mechanisms. Low-cost, mild reaction conditions and tunability of the nature of deposits make the present strategy useful for synthesizing large-area films of functional materials for possible opto-electronic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Permanent plastic deformation induced by mechanical contacts affects the shape recovery of shape memory alloys. To understand the shape recovery of NiTiCu thin films subjected to local contact stresses, systematic investigations are carried out by inducing varying levels of contact stresses using nanoindentation. The resulting indents are located precisely for imaging using a predetermined array consisting of different sized indents. Morphology and topography of these indents before and after shape recovery are characterized using Scanning Electron Microscope and Atomic Force Microscope quantitatively. Shape recovery is found to be dependent on the contact stresses at the low loads while the recovery ratio remains constant at 0.13 for higher loads. Shape recovery is found to occur mainly in depth direction of the indent, while far field residual stresses play very little role in the recovery. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the influence of Al doping on the microstructural, optical, and electrical properties of spray-deposited WO3 thin films. XRD analyses confirm that all the films are of polycrystalline WO3 in nature, possessing monoclinic structure. EDX profiles of the Al-doped films show aluminum peaks implying incorporation of Al ions into WO3 lattice. On Al doping, the average crystallite size decreases due to increase in the density of nucleation centers at the time of film growth. The observed variation in the lattice parameter values on Al doping is attributed to the incorporation of Al ions into WO3 lattice. Enhancement in the direct optical band gap compared to the undoped film has been observed on Al doping due to decrease in the width of allowed energy states near the conduction band edge. The refractive indices of the films follow the Cauchy relation of normal dispersion. Electrical resistivity compared to the undoped film has been found to increase on Al doping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction between the lattice and the orbital degrees of freedom not only makes rare-earth nickelates unusually ``bad metal,'' but also introduces a temperature-driven insulator-metal phase transition. Here we investigate this insulator-metal phase transition in thin films of SmNiO3 using the slow time-dependent fluctuations (noise) in resistivity. The normalized magnitude of noise is found to be extremely large, being nearly eight orders of magnitude higher than thin films of common disordered metallic systems, and indicates electrical conduction via classical percolation in a spatially inhomogeneous medium. The higher-order statistics of the fluctuations indicate a strong non-Gaussian component of noise close to the transition, attributing the inhomogeneity to the coexistence of the metallic and insulating phases. Our experiment offers insight into the impact of lattice-orbital coupling on the microscopic mechanism of electron transport in the rare-earth nickelates.