948 resultados para algebraic decoding
Resumo:
The following dissertation has as its main advantage the privilege of visualizing the literacy processes through the angle of the functional perspective, which does not see the literary process as a practice solely based on the decoding of alphabetical codes, and then allows for the opening of ample spaces for the allocation of mathematical skills in the realms of the functional literacy. The main object of this study was to investigate which are the contributions that a sequence of activities and of methodologies developed for the teaching of Geometry could provide for a part of the functional literacy process in mathematics of youngsters and adults of EJA, corresponding to the acquisition or to the improvement of skills related to the orientation capacity. The focus of the analyses consisted in the practice of these activities with the young and adult students of an EJA class belonging to a municipal public school of Natal/RN. The legacies of Paulo Freire about the redimensioning of the role of the teacher, of the students, of the knowledge and of their connections within the teaching-learning process, prevailed in the actions of the methodology implemented in the classroom and, especially, in the establishing of dialogic connections with the students, which directed all the observations and analyses regarding the collected information. The results indicated that the composition of articulations between the teaching of mathematics and the exploration of maps and the earth globe enabled the creation of multidisciplinary learning environments and situations, where we could observe, gradually, the development of procedures and attitudes indicating the evolution of space-visual type skills
Resumo:
In Mathematics literature some records highlight the difficulties encountered in the teaching-learning process of integers. In the past, and for a long time, many mathematicians have experienced and overcome such difficulties, which become epistemological obstacles imposed on the students and teachers nowadays. The present work comprises the results of a research conducted in the city of Natal, Brazil, in the first half of 2010, at a state school and at a federal university. It involved a total of 45 students: 20 middle high, 9 high school and 16 university students. The central aim of this study was to identify, on the one hand, which approach used for the justification of the multiplication between integers is better understood by the students and, on the other hand, the elements present in the justifications which contribute to surmount the epistemological obstacles in the processes of teaching and learning of integers. To that end, we tried to detect to which extent the epistemological obstacles faced by the students in the learning of integers get closer to the difficulties experienced by mathematicians throughout human history. Given the nature of our object of study, we have based the theoretical foundation of our research on works related to the daily life of Mathematics teaching, as well as on theorists who analyze the process of knowledge building. We conceived two research tools with the purpose of apprehending the following information about our subjects: school life; the diagnosis on the knowledge of integers and their operations, particularly the multiplication of two negative integers; the understanding of four different justifications, as elaborated by mathematicians, for the rule of signs in multiplication. Regarding the types of approach used to explain the rule of signs arithmetic, geometric, algebraic and axiomatic , we have identified in the fieldwork that, when multiplying two negative numbers, the students could better understand the arithmetic approach. Our findings indicate that the approach of the rule of signs which is considered by the majority of students to be the easiest one can be used to help understand the notion of unification of the number line, an obstacle widely known nowadays in the process of teaching-learning
Resumo:
The objective of the present work was develop a study about the writing and the algebraic manipulation of symbolical expressions for perimeter and area of some convex polygons, approaching the properties of the operations and equality, extending to the obtaining of the formulas of length and area of the circle, this one starting on the formula of the perimeter and area of the regular hexagon. To do so, a module with teaching activities was elaborated based on constructive teaching. The study consisted of a methodological intervention, done by the researcher, and had as subjects students of the 8th grade of the State School Desembargador Floriano Cavalcanti, located on the city of Natal, Rio Grande do Norte. The methodological intervention was done in three stages: applying of a initial diagnostic evaluation, developing of the teaching module, and applying of the final evaluation based on the Mathematics teaching using Constructivist references. The data collected in the evaluations was presented as descriptive statistics. The results of the final diagnostic evaluation were analyzed in the qualitative point of view, using the criteria established by Richard Skemp s second theory about the comprehension of mathematical concepts. The general results about the data from the evaluations and the applying of the teaching module showed a qualitative difference in the learning of the students who participated of the intervention
Resumo:
This work present a interval approach to deal with images with that contain uncertainties, as well, as treating these uncertainties through morphologic operations. Had been presented two intervals models. For the first, is introduced an algebraic space with three values, that was constructed based in the tri-valorada logic of Lukasiewiecz. With this algebraic structure, the theory of the interval binary images, that extends the classic binary model with the inclusion of the uncertainty information, was introduced. The same one can be applied to represent certain binary images with uncertainty in pixels, that it was originated, for example, during the process of the acquisition of the image. The lattice structure of these images, allow the definition of the morphologic operators, where the uncertainties are treated locally. The second model, extend the classic model to the images in gray levels, where the functions that represent these images are mapping in a finite set of interval values. The algebraic structure belong the complete lattices class, what also it allow the definition of the elementary operators of the mathematical morphology, dilation and erosion for this images. Thus, it is established a interval theory applied to the mathematical morphology to deal with problems of uncertainties in images
Resumo:
In this work we use Interval Mathematics to establish interval counterparts for the main tools used in digital signal processing. More specifically, the approach developed here is oriented to signals, systems, sampling, quantization, coding and Fourier transforms. A detailed study for some interval arithmetics which handle with complex numbers is provided; they are: complex interval arithmetic (or rectangular), circular complex arithmetic, and interval arithmetic for polar sectors. This lead us to investigate some properties that are relevant for the development of a theory of interval digital signal processing. It is shown that the sets IR and R(C) endowed with any correct arithmetic is not an algebraic field, meaning that those sets do not behave like real and complex numbers. An alternative to the notion of interval complex width is also provided and the Kulisch- Miranker order is used in order to write complex numbers in the interval form enabling operations on endpoints. The use of interval signals and systems is possible thanks to the representation of complex values into floating point systems. That is, if a number x 2 R is not representable in a floating point system F then it is mapped to an interval [x;x], such that x is the largest number in F which is smaller than x and x is the smallest one in F which is greater than x. This interval representation is the starting point for definitions like interval signals and systems which take real or complex values. It provides the extension for notions like: causality, stability, time invariance, homogeneity, additivity and linearity to interval systems. The process of quantization is extended to its interval counterpart. Thereafter the interval versions for: quantization levels, quantization error and encoded signal are provided. It is shown that the interval levels of quantization represent complex quantization levels and the classical quantization error ranges over the interval quantization error. An estimation for the interval quantization error and an interval version for Z-transform (and hence Fourier transform) is provided. Finally, the results of an Matlab implementation is given
Resumo:
Multiphase flows in ducts can adopt several morphologies depending on the mass fluxes and the fluids properties. Annular flow is one of the most frequently encountered flow patterns in industrial applications. For gas liquid systems, it consists of a liquid film flowing adjacent to the wall and a gas core flowing in the center of the duct. This work presents a numerical study of this flow pattern in gas liquid systems in vertical ducts. For this, a solution algorithm was developed and implemented in FORTRAN 90 to numerically solve the governing transport equations. The mass and momentum conservation equations are solved simultaneously from the wall to the center of the duct, using the Finite Volumes Technique. Momentum conservation in the gas liquid interface is enforced using an equivalent effective viscosity, which also allows for the solution of both velocity fields in a single system of equations. In this way, the velocity distributions across the gas core and the liquid film are obtained iteratively, together with the global pressure gradient and the liquid film thickness. Convergence criteria are based upon satisfaction of mass balance within the liquid film and the gas core. For system closure, two different approaches are presented for the calculation of the radial turbulent viscosity distribution within the liquid film and the gas core. The first one combines a k- Ɛ one-equation model and a low Reynolds k-Ɛ model. The second one uses a low Reynolds k- Ɛ model to compute the eddy viscosity profile from the center of the duct right to the wall. Appropriate interfacial values for k e Ɛ are proposed, based on concepts and ideas previously used, with success, in stratified gas liquid flow. The proposed approaches are compared with an algebraic model found in the literature, specifically devised for annular gas liquid flow, using available experimental results. This also serves as a validation of the solution algorithm
Resumo:
This work aims at the implementation and adaptation of a computational model for the study of the Fischer-Tropsch reaction in a slurry bed reactor from synthesis gas (CO+H2) for the selective production of hydrocarbons (CnHm), with emphasis on evaluation of the influence of operating conditions on the distribution of products formed during the reaction.The present model takes into account effects of rigorous phase equilibrium in a reactive flash drum, a detailed kinetic model able of predicting the formation of each chemical species of the reaction system, as well as control loops of the process variables for pressure and level of slurry phase. As a result, a system of Differential Algebraic Equations was solved using the computational code DASSL (Petzold, 1982). The consistent initialization for the problem was based on phase equilibrium formed by the existing components in the reactor. In addition, the index of the system was reduced to 1 by the introduction of control laws that govern the output of the reactor products. The results were compared qualitatively with experimental data collected in the Fischer-Tropsch Synthesis plant installed at Laboratório de Processamento de Gás - CTGÁS-ER-Natal/RN
Resumo:
The objective of this work was the development and improvement of the mathematical models based on mass and heat balances, representing the drying transient process fruit pulp in spouted bed dryer with intermittent feeding. Mass and energy balance for drying, represented by a system of differential equations, were developed in Fortran language and adapted to the condition of intermittent feeding and mass accumulation. Were used the DASSL routine (Differential Algebraic System Solver) for solving the differential equation system and used a heuristic optimization algorithm in parameter estimation, the Particle Swarm algorithm. From the experimental data food drying, the differential models were used to determine the quantity of water and the drying air temperature at the exit of a spouted bed and accumulated mass of powder in the dryer. The models were validated using the experimental data of drying whose operating conditions, air temperature, flow rate and time intermittency, varied within the limits studied. In reviewing the results predicted, it was found that these models represent the experimental data of the kinetics of production and accumulation of powder and humidity and air temperature at the outlet of the dryer
Resumo:
Este texto tem por objetivo ressaltar um aspecto que não tem sido tratado com a devida profundidade na literatura que estuda a formalização da Teoria Geral do Emprego, dos Juros e da Moeda de John Maynard Keynes (1936). Mais precisamente, o texto destaca a estratégia de formalização adotada por David G. Champernowne em seu artigo intitulado Unemployment, Basic and Monetary: the classical analysis and the keynesian, publicado em 1935-36 na Review of Economic Studies. Chamamos a atenção para o fato dele distinguir a teoria clássica da teoria de Keynes não apenas pelos pressupostos adotados por cada teoria, mas principalmente pela construção de subsistemas a partir de um sistema geral, com características recursivas (relações de causalidade) distintas. As explicações em prosa, a descrição algébrica das funções comportamentais e condições de equilíbrio e a ilustração por meio de diagramas, além da escolha de conjuntos específicos de variáveis para representar cada uma das teorias e suas diferentes versões são aspectos deste artigo de Champernowne que merecem uma análise mais minuciosa.
Resumo:
This work presents a proposal of a methodological change to the teaching and learning of the complex numbers in the Secondary education. It is based on the inquiries and difficulties of students detected in the classrooms about the teaching of complex numbers and a questioning of the context of the mathematics teaching - that is the reason of the inquiry of this dissertation. In the searching for an efficient learning and placing the work as a research, it is presented a historical reflection of the evolution of the concept of complex numbers pointing out their more relevant focuses, such as: symbolic, numeric, geometrical and algebraic ones. Then, it shows the description of the ways of the research based on the methodology of the didactic engineering. This one is developed from the utilization of its four stages, where in the preliminary analysis stage, two data surveys are presented: the first one is concerning with the way of presenting the contents of the complex numbers in math textbooks, and the second one is concerning to the interview carried out with High school teachers who work with complex numbers in the practice of their professions. At first, in the analysis stage, it is presented the prepared and organized material to be used in the following stage. In the experimentation one, it is presented the carrying out process that was made with the second year High school students in the Centro Federal de Educação tecnológica do Rio Grande do Norte CEFET-RN. At the end, it presents, in the subsequent and validation stages, the revelation of the obtained results from the observations made in classrooms in the carrying out of the didactic sequence, the students talking and the data collection
Resumo:
Dans cet article on examinera les cérémonies d'acclamation du roi D. João VI qui ont eu lieu à Tejuco en 1818. Le décodage de la riche variété d'images esthétiques présente dans ces célébrations peut être une stratégie privilégiée pour comprendre la création, à ce moment-là, des mythes qui donneraient soutien et orientation au projet d'affirmation du prestige politique du roi et à la consolidation de sa domination sur la région et sur tout le territoire brésilien. on analysera en particulier le conflit de mémoires entre la signification symbolique de la célébration et la révolte du peuple de Minas contre l'exploitation coloniale portugaise qui avait éclaté dans la région environ trois décennies avant.
Resumo:
This study was conducted from a preliminary research to identify the conceptual and didactic approach to the logarithms given in the main textbooks adopted by the Mathematics teachers in state schools in the School of Natal, in Rio Grande do Norte. I carried out an historical investigation of the logarithms in order to reorient the math teacher to improve its educational approach this subject in the classroom. Based on the research approach I adopted a model of the log based on three concepts: the arithmetic, the geometric and algebraic-functional. The main objective of this work is to redirect the teacher for a broad and significant understanding of the content in order to overcome their difficulties in the classroom and thus realize an education that can reach the students learning. The investigative study indicated the possibility of addressing the logarithms in the classroom so transversalizante and interdisciplinary. In this regard, I point to some practical applications of this matter are fundamental in the study of natural phenomena as earthquakes, population growth, among others. These practical applications are connected, approximately, Basic Problematization Units (BPUs) to be used in the classroom. In closing, I offer some activities that helped teachers to understand and clarify the meaningful study of this topic in their teaching practice
Resumo:
The present investigation includes a study of Leonhard Euler and the pentagonal numbers is his article Mirabilibus Proprietatibus Numerorum Pentagonalium - E524. After a brief review of the life and work of Euler, we analyze the mathematical concepts covered in that article as well as its historical context. For this purpose, we explain the concept of figurate numbers, showing its mode of generation, as well as its geometric and algebraic representations. Then, we present a brief history of the search for the Eulerian pentagonal number theorem, based on his correspondence on the subject with Daniel Bernoulli, Nikolaus Bernoulli, Christian Goldbach and Jean Le Rond d'Alembert. At first, Euler states the theorem, but admits that he doesn t know to prove it. Finally, in a letter to Goldbach in 1750, he presents a demonstration, which is published in E541, along with an alternative proof. The expansion of the concept of pentagonal number is then explained and justified by compare the geometric and algebraic representations of the new pentagonal numbers pentagonal numbers with those of traditional pentagonal numbers. Then we explain to the pentagonal number theorem, that is, the fact that the infinite product(1 x)(1 xx)(1 x3)(1 x4)(1 x5)(1 x6)(1 x7)... is equal to the infinite series 1 x1 x2+x5+x7 x12 x15+x22+x26 ..., where the exponents are given by the pentagonal numbers (expanded) and the sign is determined by whether as more or less as the exponent is pentagonal number (traditional or expanded). We also mention that Euler relates the pentagonal number theorem to other parts of mathematics, such as the concept of partitions, generating functions, the theory of infinite products and the sum of divisors. We end with an explanation of Euler s demonstration pentagonal number theorem
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Using a synthesis of the functional integral and operator approaches we discuss the fermion-buson mapping and the role played by the Bose field algebra in the Hilbert space of two-dimensional gauge and anomalous gauge field theories with massive fermions. In QED, with quartic self-interaction among massive fermions, the use of an auxiliary vector field introduces a redundant Bose field algebra that should not be considered as an element of the intrinsic algebraic structure defining the model. In anomalous chiral QED, with massive fermions the effect of the chiral anomaly leads to the appearance in the mass operator of a spurious Bose field combination. This phase factor carries no fermion selection rule and the expected absence of Theta-vacuum in the anomalous model is displayed from the operator solution. Even in the anomalous model with massive Fermi fields, the introduction of the Wess-Zumino field replicates the theory, changing neither its algebraic content nor its physical content. (C) 2002 Elsevier B.V. (USA).