977 resultados para a. carbon nanotubes and nanofibres


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly dispersed nanocomposites of polyaniline(PANI) and oxidized single wall carbon nanotubes(SWNTs) have been prepared using dodecylbenzenesulfonic acid as dispersant. The materials were characterized via resonance Raman and electronic absorption spectroscopies. The behavior of the composites as a function of the applied potential was also investigated using in situ Raman electrochemical measurements. The results obtained at E(laser) = 1.17 eV suggest that a charge-transfer process occur between PANI and semiconducting nanotubes for samples where the metallic tubes are previously oxidized. The spectroelectrochemical data show that the presence of SWNTs prevents the oxidation of PANI rings. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical detection of the hazardous pollutant 4-nitrophenol (4-NP) at low potentials, in order to avoid matrix interferences, is an important research challenge. This study describes the development, electrochemical characterization and utilization of a multiwall carbon nanotube (MWCNT) film electrode for the quantitative determination of 4-NP in natural water. Electrochemical impedence spectroscopy measurements showed that the modified surface exhibits a decrease of ca. 13 times in the charge transfer resistance when compared with a bare glassy carbon (GC) surface. Voltammetric experiments showed the possibility to oxidize a hydroxylamine layer (produced by the electrochemical reduction of 4-NP on the GC/MWNCT surface) in a potential region which is approximately 700 mV less positive than that needed to oxidize 4-NP, thus minimizing the interference of matrix components. The limit of detection for 4-NP obtained using square-wave voltammetry (0.12 mu mol L(-1)) was lower than the value advised by EPA. A natural water sample from a dam located in Sao Carlos (Brazil) was spiked with 4-NP and analyzed by the standard addition method using thee GC/MWCNT electrode, without any further purification step. the recovery procedure yielded a value of 96.5% for such sample, thus confirming the suitability of the developed method to determine 4-NP in natural water samples. The electrochemical determination was compared with that obtained by HPLC with UV-vis detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new electrochemical methodology has been developed for the detection of ozone using multiwalled carbon nanotubes (MWCNT). The method presented here is based on the reaction of ozone with indigo blue dye producing anthranilic acid (ATN). The electrochemical profile of ATN on an electrode of glassy carbon (GC) modified with MWCNT showed an oxidation peak potential at 750 mV vs. Ag/AgCl. An analytical method was developed using differential pulse voltammetry (DPV) to determine ATN in a range of 50-400 nmol L(-1), with a detection limit of 9.7 nmol L(-1). Ozonated water samples were successfully analyzed by GC/MWCNT electrode and the recovery procedure yielded values between of 96.5 and 102.3%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behaviour of multi-walled carbon nanotubes was compared with that of glassy carbon, and the differences were investigated by cyclic voltammetry and electrochemical impedance spectroscopy before and after acid pre-treatment. The electrochemical techniques showed that acid functionalisation significantly improves the electrocatalytic properties of carbon nanotubes. These electrocatalytic properties enhance the analytical signal, shift the oxidation peak potential to a less positive value, and the charge-transfers rate increase of both dopamine and K(4)[Fe(CN)(6)]. The functionalisation step and the resulting appearance of edge planes covered with different chemical groups were confirmed by FTIR measurements. Carbon nanotubes after acid pre-treatment are a potentially powerful analytical tool for sensor development. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development and application of a functionalized carbon nanotubes paste electrode (CNPE) modified with crosslinked chitosan for determination of Cu(II) in industrial wastewater, natural water and human urine samples by linear scan anodic stripping voltammetry (LSASV) are described. Different electrodes were constructed using chitosan and chitosan crosslinked with glutaraldehyde (CTS-GA) and epichlorohydrin (CTS-ECH). The best voltammetric response for Cu(II) was obtained with a paste composition of 65% (m/m) of functionalized carbon nanotubes, 15% (m/m) of CTS-ECH, and 20% (m/m) of mineral oil using a solution of 0.05 mol L(-1) KNO(3) with pH adjusted to 2.25 with HNO(3), an accumulation potential of 0.3V vs. Ag/AgCl (3.0 mol L(-1) KCl) for 300 s and a scan rate of 100 mV s(-1). Under these optimal experimental conditions, the voltammetric response was linearly dependent on the Cu(II) concentration in the range from 7.90 x 10(-8) to 1.60 x 10(-5) mol L(-1) with a detection limit of 1.00 x 10(-8) mol L(-1). The samples analyses were evaluated using the proposed sensor and a good recovery of Cu(II) was obtained with results in the range from 98.0% to 104%. The analysis of industrial wastewater, natural water and human urine samples obtained using the proposed CNPE modified with CTS-ECH electrode and those obtained using a comparative method are in agreement at the 95% confidence level. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Judicious application of site-selective reactions to non-aligned and aligned carbon nanotubes has opened a rich field of carbon nanotube chemistry. In order to meet specific requirements demanded by particular applications (e.g. biocompatibility for nanotube biosensors and interfacial strength for blending with polymers), chemical modification of carbon nanotubes is essential. The tips of carbon nanotubes are more reactive than their sidewalls, allowing a variety of chemical reagents to be attached at the nanotube tips. Recently, some interesting reactions have also been devised for chemical modification of both the inner and outer nanotube walls, though the seamless arrangement of hexagon rings renders the sidewalls relatively unreactive. This review provides a brief summary of very recent progress in the research on chemistry of carbon nanotubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Focused ion beam (FIB) milling system has been used to create nanosized patterns as the template for patterned growth of carbon nanotubes on Si substrate surface without predeposition of metal catalysts. Carbon nanotubes only nucleate and grow on the template under controlled pyrolysis of iron phthalocyanine at 1000 °C. The size, growth direction, and density of the patterned nanotubes can be controlled under different growth conditions and template sizes. Atomic force microscopy and electron microscopy analyses reveal that the selective growth on the FIB template is due to its special surface morphology and crystalline structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aligned carbon nanotubes (CNTs) can be readily synthesized on quartz or silicon-oxide-coated Si substrates using a chemical vapor deposition method, but it is difficult to grow them on pure Si substrates without predeposition of metal catalysts. We report that aligned CNTs were grown by pyrolysis of iron phthalocyanine at 1000 °C on the templates created on Si substrates with simple mechanical scratching. Scanning electron microscopy and x-ray energy spectroscopy analysis revealed that the trenches and patterns created on the surface of Si substrates were preferred nucleation sites for nanotube growth due to a high surface energy, metastable surface structure, and possible capillarity effect. A two-step pyrolysis process maintained Fe as an active catalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modification of glassy carbon electrodes with random dispersions of nanotubes is currently the most popular approach to the preparation of carbon nanotube modified electrodes. The performance of glassy carbon electrodes modified with a random dispersion of bamboo type carbon nanotubes was compared with single walled carbon nanotubes modified glassy carbon electrodes and bare glassy carbon electrodes. The electrochemical performance of all three types for electrode were compared by investigating the electrochemistry with solution species and the oxidation of guanine and adenine bases of surface adsorbed DNA. The presence of edge planes of graphene at regular intervals along the walls of the bamboo nanotubes resulted in superior electrochemical performance relative to SWNT modified electrodes from two aspects. Firstly, with solution species the peak separation of the oxidation and reduction waves were smaller indicating more rapid rates of electron transfer. Secondly, a greater number of electroactive sites along the walls of the bamboo-carbon nanotubes (BCNTs) resulted in larger current signals and a broader dynamic range for the oxidation of DNA bases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large-scale, high-density, and patterned carbon nanotubes (CNTs) on both pure Si and quartz (SiO2) substrates have been produced using different approaches. The CNTs were synthesized by pyrolysis of the ball-milled iron phthalocyanine (FePc) in a tube furnace under a Ar-5% H2 gas flow. Because patterned CNTs are difficult to grow directly on smooth and perfect single-crystalline Si wafer surface, mechanical scratches were created to help the selective deposition and growth of CNTs on the scratched areas. This simple process does not require pre-deposition of any metal catalysts. For SiO2 substrates, which can be readily covered by a CNT film, patterned CNTs are produced using a TEM grid as mask to cover the areas where CNTs are not needed. The growth temperature and vapor density have strong influence on the patterned CNT formation. The scratch areas with a special structure and a higher surface energy help the selective nucleation of CNTs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the dielectrophoretic (DEP) assembly of multi-walled carbon nanotubes (MWCNTs) between curved microelectrodes for the purpose of trapping polystyrene microparticles within a microfluidic system. Under normal conditions, polystyrene particles exhibit negative DEP behaviour and are repelled from microelectrodes. Interestingly, the addition of MWCNTs to the system alters this situation in two ways: first, they coat the surface of particles and change their dielectric properties to exhibit positive DEP behaviour; second, the assembled MWCNTs are highly conductive and after the deposition serve as extensions to the microelectrodes. They establish an array of nanoelectrodes that initiates from the edge of microelectrodes and grow along the electric field lines. These nanoelectrodes can effectively trap the MWCNT-coated particles, since they cover a large portion of the microchannel bottom surface and also create a much stronger electric field than the primary microelectrodes as confirmed by our numerical simulations. We will show that the presence of MWCNT significantly changes performance of the system, which is investigated by trapping sample polystyrene particles with plain, COOH and goat anti-mouse IgG surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article compares the operation of a dielectrophoretic (DEP) platform before and after pattering carbon nanotubes (CNTs) between its microelectrodes. The diverse performance of the DEP system is assessed by separating 1 and 5 μm polystyrene particles. In the absence of CNTs, both particles can only be trapped by operating the system at low medium conductivities, (<10-3 S/m) and frequencies (<75 kHz). Alternatively, applying CNTs to the system, some CNTs coat the surface of particles and increase their overall conductivity and permittivity, whereas the rest of them are patterned between the microelectrodes and induce strong DEP forces at their free ends, which can effectively trap the coated particles. The first development extends the range of medium conductivities and frequencies at which the trapping of both particles is achievable, whereas the second development facilitates the selective deposition of particles along the surface of curved microelectrodes. Setting the medium conductivity to 2×10-3 S/m and the frequency to 20 MHz, most of 5 μm particles are trapped at the entry region of the first microelectrode pair, whereas most of 1 μm particles are trapped at the tips, and this distinction facilitates their separation. The trapping of 1 μm particles can be improved by decreasing the frequency to 1.5 MHz. This study demonstrates how the integration of CNTs into microfluidic systems enables them to operate beyond their capabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From diagnosis of life-threatening diseases to detection of biological agents in warfare or terrorist attacks, biosensors are becoming a critical part of modern life. Many recent biosensors have incorporated carbon nanotubes as sensing elements, while a growing body of work has begun to do the same with the emergent nanomaterial graphene, which is effectively an unrolled nanotube. With this widespread use of carbon nanomaterials in biosensors, it is timely to assess how this trend is contributing to the science and applications of biosensors. This Review explores these issues by presenting the latest advances in electrochemical, electrical, and optical biosensors that use carbon nanotubes and graphene, and critically compares the performance of the two carbon allotropes in this application. Ultimately, carbon nanomaterials, although still to meet key challenges in fabrication and handling, have a bright future as biosensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two methods for attaching DNA to oxidized single-walled carbon nanotubes either in organic solvent or aqueous solution are described. The sites of DNA attachment to the nanotubes have been verified by binding gold nanoparticles modified with DNA of complementary sequence to the DNA-modified nanotubes, and imaging with TEM. The gold nanoparticles appear on the tips of the nanotubes, and at isolated positions (defects) on the sidewalls. The methods provide versatility for the modification of nanotubes with DNA for their directed assembly, or for their composites with gold nanoparticles, into nanoscale devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a novel approach for the assembly of one-dimensional hybrid nanostructures that consist of gold nanowires with ultrahigh aspect ratios (L/d > 500) self-assembled along the axes of multiwalled carbon nanotubes. The micrometer-long hybrid nanowires exhibit high electrical conductivity and can be easily microcontact-printed onto various substrates in a patterned form, suggesting that these hybrids have considerable potential as interconnects for nanoelectronic applications.