970 resultados para Williams, G. Mennen, 1911-
Resumo:
Purpose Most studies that use either a single exercise session, exercise training, or a cross-sectional design have failed to find a relationship between exercise and plasma lipoprotein(a) [Lp(a)] concentrations. However, a few studies investigating the effects of longer and/or more strenuous exercise have shown elevated Lp(a) concentrations, possibly as an acute-phase reactant to muscle damage. Based on the assumption that greater muscle damage would occur with exercise of longer duration, the purpose of the present study was to determine whether exercise of longer duration would increase Lp(a) concentration and creatine kinase. (CK) activity more than exercise of shorter duration. Methods Ten endurance-trained men (mean +/- SD: age, 27 +/- 6 yr; maximal oxygen consumption [(V)over dotO(2max)], 57 +/- 7 mL(.)kg(-1) min(-1)) completed two separate exercise sessions at 70% (V)over dotO(2max). One session required 900 kcal of energy expenditure (60 +/- 6 min), and the other required 1500 kcal (112 +/- 12 min). Fasted blood samples were taken immediately before (0-pre), immediately after (0-post), 1 d after (1-post), and 2 d after (2-post) each exercise session. Results CK activity increased after both exercise sessions (mean +/- SE; 800 kcal: 0-pre 55 +/- 11, 1-post 168 +/- 64 U(.)L(-1.)min(-1); 1500 kcal: 0-pre 51 +/- 5, 1-post 187 +/- 30, 2-post 123 +/- 19 U(.)L(-1.)min(-1); P < 0.05). However, median Lp(a) concentrations were not altered by either exercise session (800 kcal: 0-pre 5.0 mg(.)dL(-1), 0-post 3.2 mg(.)dL(-1), 1-post 4.0 mg(.)dL(-1), 2-post 3.4 mg(.)dL(-1); 1500 kcal: 0-pre 5.8 mg(.)dL(-1), 0-post 4.3 mg(.)dL(-1), 1-post 3.2 mg(.)dL(-1), 2-post 5.3 mg(.)dL(-1)). In addition, no relationship existed between exercise-induced changes in CK activity and Lp(a) concentration (800 kcal: r = -0.26; 1500 kcal: r = -0.02). Conclusion These results suggest that plasma Lp(a) concentration will not increase in response to minor exercise-induced muscle damage in endurance-trained runners.
Resumo:
Lipoprotein(a) (Lp(a)) is bound to apolipoprotein B-100 by disulfide linkage and is associated in the upper density range of low density lipoprotein cholesterol. Persons with elevated concentrations of Lp(a) are regarded as having an increased risk for premature coronary artery disease. Although many studies exist evaluating the effects of a single session of exercise on lipids and lipoproteins, little information is available concerning the effects of exercise on Lp(a). Therefore, the purpose of this study was to determine the effects of a single exercise session on plasma Lp(a). Twelve physically active men completed two 30-min submaximal treadmill exercise sessions: low intensity (LI, 50% VO2max) and high intensity (HI, 80% VO2max). Blood samples were obtained immediately before and after exercise. Total cholesterol (LI: before 4.22 +/- 0.26, after 4.24 +/- 0.28; HI: before 4.24 +/- 0.31, after 4.11 +/- 0.28 mmol . l(-1), mean +/- SE) and triglyceride (LI: before 1.14 +/- 0.16, after 1.06 +/- 0.16; HI: before 1.12 +/- 0.19, after 1.21 +/- 0.19 mmol . l(-1)) concentrations did not differ immediately after either exercise session, nor did Lp(a) concentrations differ immediately after either exercise session (LI: before 4.1 +/- 2.2, after 4.0 +/- 2.1; HI: before 3.9 +/- 2.2, after 3.7 +/- 2.0 mg . dl(-1)). These results suggest that neither a low nor a high intensity exercise session lasting 30 min in duration has an immediate effect on plasma Lp(a).
Resumo:
The purpose of this study was to determine whether physical activity behavior tracks during early childhood. Forty-seven children (22 males, 25 females) aged 3-4 yr at the beginning of the study were followed over a 3-yr period. Heart rates were measured at least 2 and up to 4 d . yr(-1) with a Quantum XL Telemetry heart rate monitor. Physical activity was quantified as the percentage of observed minutes between 3:00 and 6:00 p.m. during which heart rate was 50% or more above individual resting heart rate (PAHR-50 Index). Tracking of physical activity was analyzed using Pearson and Spearman correlations. Yearly PAHR-50 index tertiles were created and examined for percent agreement and Cohen's kappa. Repeated measures ANOVA was used to calculate the intraclass correlation coefficient across the 3 yr of the study. Spearman rank order correlations ranged from 0.57 to 0.66 (P < 0.0001). Percent agreement ranged from 49% to 62%. The intraclass R for the 3 yr was 0.81. It was concluded that physical activity behavior tends to track during early childhood.
Resumo:
The absence of comparative validity studies has prevented researchers from reaching consensus regarding the application of intensity-related accelerometer cut points for children and adolescents. PURPOSE This study aimed to evaluate the classification accuracy of five sets of independently developed ActiGraph cut points using energy expenditure, measured by indirect calorimetry, as a criterion reference standard. METHODS A total of 206 participants between the ages of 5 and 15 yr completed 12 standardized activity trials. Trials consisted of sedentary activities (lying down, writing, computer game), lifestyle activities (sweeping, laundry, throw and catch, aerobics, basketball), and ambulatory activities (comfortable walk, brisk walk, brisk treadmill walk, running). During each trial, participants wore an ActiGraph GT1M, and VO 2 was measured breath-by-breath using the Oxycon Mobile portable metabolic system. Physical activity intensity was estimated using five independently developed cut points: Freedson/Trost (FT), Puyau (PU), Treuth (TR), Mattocks (MT), and Evenson (EV). Classification accuracy was evaluated via weighted κ statistics and area under the receiver operating characteristic curve (ROC-AUC). RESULTS Across all four intensity levels, the EV (κ = 0.68) and FT (κ = 0.66) cut points exhibited significantly better agreement than TR (κ = 0.62), MT (κ = 0.54), and PU (κ = 0.36). The EV and FT cut points exhibited significantly better classification accuracy for moderate-to vigorous-intensity physical activity (ROC-AUC = 0.90) than TR, PU, or MT cut points (ROC-AUC = 0.77-0.85). Only the EV cut points provided acceptable classification accuracy for all four levels of physical activity intensity and performed well among children of all ages. The widely applied sedentary cut point of 100 counts per minute exhibited excellent classification accuracy (ROC-AUC = 0.90). CONCLUSIONS On the basis of these findings, we recommend that researchers use the EV ActiGraph cut points to estimate time spent in sedentary, light-, moderate-, and vigorous-intensity activity in children and adolescents. Copyright © 2011 by the American College of Sports Medicine.
Resumo:
Purpose The purpose of this study was to establish the minimal number of days of monitoring required for accelerometers to assess usual physical activity in children. Methods A total of 381 students (189 M, 192 F) wore a CSA 7164 uniaxial accelerometer for seven consecutive days. To examine age-related trends students were grouped as follows: Group I: grades 1-3 (N = 92); Group II: grades 4-6 (N = 98); Group III: grades 7-9 (N = 97); Group IV: grades 10-12 (N = 94). Average daily time spent in moderate-to-vigorous physical activity (MVPA) was calculated from minute-by-minute activity counts using the regression equation developed by Freedson et al. (1997). Results Compared with adolescents in grades 7 to 12, children in grades 1 to 6 exhibited less day-to-day variability in MVPA behavior. Spearman-Brown analysts indicated that between 4 and 5 d of monitoring would be necessary to a achieve a reliability of 0.80 in children, and between 8 and 9 d of monitoring would be necessary to achieve a reliability of 0.80 in adolescents. Within all grade levels, the 7-d monitoring protocol produced acceptable estimates of daily participation in MVPA (R = 0.76 (0.71-0.81) to 0.87 (0.84-0.90)). Compared with weekdays, children exhibited significantly higher levels of MVPA on weekends, whereas adolescents exhibited significantly lower levels of MVPA on weekends. Principal components analysis revealed two distinct time components for MVPA during the day for children (early morning, rest of the day), and three distinct time components for MVPA during the day for adolescents (morning, afternoon, early evening). Conclusions These results indicate that a 7-d monitoring protocol provides reliable estimates of usual physical activity behavior in children and adolescents and accounts for potentially important differences in weekend versus weekday activity behavior as well as differences in activity patterns within a given day.
Resumo:
Purpose To describe the physical activity (PA) levels of children attending after-school programs, 2) examine PA levels in specific after-school sessions and activity contexts, and 3) evaluate after-school PA differences in groups defined by sex and weight status. Methods One hundred forty-seven students in grades 3-6 (mean age: 10.1 +/- 0.7, 54.4% male, 16.5% overweight (OW), 22.8% at-risk for OW) from seven after-school programs in the midwestern United States wore Actigraph GT1M accelerometers for the duration of their attendance to the program. PA was objectively assessed on six occasions during an academic year (three fall and three spring). Stored activity counts were uploaded to a customized data-reduction program to determine minutes of sedentary (SED), light (LPA), moderate (MPA), vigorous (VPA), and moderate-to-vigorous (MVPA) physical activity. Time spent in each intensity category was calculated for the duration of program attendance, as well as specific after-school sessions (e.g., free play, snack time). Results On average, participants exhibited 42.6 min of SED, 40.8 min of LPA, 13.4 min of MPA, and 5.3 min of VPA. The average accumulation of MVPA was 20.3 min. Boys exhibited higher levels of MPA, VPA, and MVPA, and lower levels of SED and LPA, than girls. OW and at-risk-for-OW students exhibited significantly less VPA than nonoverweight students, but similar levels of LPA, MPA, and MVPA. MVPA levels were significantly higher during free-play activity sessions than during organized or structured activity sessions. Conclusion After-school programs seem to be an important contributor to the PA of attending children. Nevertheless, ample room for improvement exists by making better use of existing time devoted to physical activity.
Resumo:
Purpose The purpose of this study was to evaluate the validity of the CSA activity monitor as a measure of children's physical activity using energy expenditure (EE) as a criterion measure. Methods Thirty subjects aged 10 to 14 performed three 5-min treadmill bouts at 3, 4, and 6 mph, respectively. While on the treadmill, subjects wore CSA (WAM 7164) activity monitors on the right and left hips. (V) over dot O-2 was monitored continuously by an automated system. EE was determined by multiplying the average (V) over dot O-2 by the caloric equivalent of the mean respiratory exchange ratio. Results Repeated measures ANOVA indicated that both CSA monitors were sensitive to changes in treadmill speed. Mean activity counts from each CSA unit were not significantly different and the intraclass reliability coefficient for the two CSA units across all speeds was 0.87. Activity counts from both CSA units were strongly correlated with EE (r = 0.86 and 0.87, P < 0.001). An EE prediction equation was developed from 20 randomly selected subjects and cross-validated on the remaining 10. The equation predicted mean EE within 0.01 kcal.min(-1). The correlation between actual and predicted values was 0.93 (P < 0.01) and the SEE was 0.93 kcal.min(-1). Conclusion These data indicate that the CSA monitor is a valid and reliable tool for quantifying treadmill walking and running in children.
Resumo:
Child care centers differ systematically with respect to the quality and quantity of physical activity they provide, suggesting that center-level policies and practices, as well as the center's physical environment, are important influences on children's physical activity behavior. Purpose To summarize and critically evaluate the extant peer-reviewed literature on the influence of child care policy and environment on physical activity in preschool-aged children. Methods A computer database search identified seven relevant studies that were categorized into three broad areas: cross-sectional studies investigating the impact of selected center-level policies and practices on moderate-to-vigorous physical activity (MVPA), studies correlating specific attributes of the outdoor play environment with the level and intensity of MVPA, and studies in which a specific center-level policy or environmental attribute was experimentally manipulated and evaluated for changes in MVPA. Results Staff education and training, as well as staff behavior on the playground, seem to be salient influences on MVPA in preschoolers. Lower playground density (less children per square meter) and the presence of vegetation and open play areas also seem to be positive influences on MVPA. However, not all studies found these attributes to be significant. The availability and quality of portable play equipment, not the amount or type of fixed play equipment, significantly influenced MVPA levels. Conclusions Emerging evidence suggests that several policy and environmental factors contribute to the marked between-center variability in physical activity and sedentary behavior. Intervention studies targeting these factors are thus warranted.
Resumo:
Purpose This Study evaluated the predictive validity of three previously published ActiGraph energy expenditure (EE) prediction equations developed for children and adolescents. Methods A total of 45 healthy children and adolescents (mean age: 13.7 +/- 2.6 yr) completed four 5-min activity trials (normal walking. brisk walking, easy running, and fast running) in ail indoor exercise facility. During each trial, participants were all ActiGraph accelerometer oil the right hip. EE was monitored breath by breath using the Cosmed K4b(2) portable indirect calorimetry system. Differences and associations between measured and predicted EE were assessed using dependent t-tests and Pearson correlations, respectively. Classification accuracy was assessed using percent agreement, sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve. Results None of the equations accurately predicted mean energy expenditure during each of the four activity trials. Each equation, however, accurately predicted mean EE in at least one activity trial. The Puyau equation accurately predicted EE during slow walking. The Trost equation accurately predicted EE during slow running. The Freedson equation accurately predicted EE during fast running. None of the three equations accurately predicted EE during brisk walking. The equations exhibited fair to excellent classification accuracy with respect to activity intensity. with the Trost equation exhibiting the highest classification accuracy and the Puyau equation exhibiting the lowest. Conclusions These data suggest that the three accelerometer prediction equations do not accurately predict EE on a minute-by-minute basis in children and adolescents during overground walking and running. The equations maybe, however, for estimating participation in moderate and vigorous activity.
Resumo:
Previous studies have demonstrated that pattern recognition approaches to accelerometer data reduction are feasible and moderately accurate in classifying activity type in children. Whether pattern recognition techniques can be used to provide valid estimates of physical activity (PA) energy expenditure in youth remains unexplored in the research literature. Purpose: The objective of this study is to develop and test artificial neural networks (ANNs) to predict PA type and energy expenditure (PAEE) from processed accelerometer data collected in children and adolescents. Methods: One hundred participants between the ages of 5 and 15 yr completed 12 activity trials that were categorized into five PA types: sedentary, walking, running, light-intensity household activities or games, and moderate-to-vigorous intensity games or sports. During each trial, participants wore an ActiGraph GTIM on the right hip, and (V) Over dotO(2) was measured using the Oxycon Mobile (Viasys Healthcare, Yorba Linda, CA) portable metabolic system. ANNs to predict PA type and PAEE (METs) were developed using the following features: 10th, 25th, 50th, 75th, and 90th percentiles and the lag one autocorrelation. To determine the highest time resolution achievable, we extracted features from 10-, 15-, 20-, 30-, and 60-s windows. Accuracy was assessed by calculating the percentage of windows correctly classified and root mean square en-or (RMSE). Results: As window size increased from 10 to 60 s, accuracy for the PA-type ANN increased from 81.3% to 88.4%. RMSE for the MET prediction ANN decreased from 1.1 METs to 0.9 METs. At any given window size, RMSE values for the MET prediction ANN were 30-40% lower than the conventional regression-based approaches. Conclusions: ANNs can be used to predict both PA type and PAEE in children and adolescents using count data from a single waist mounted accelerometer.
Resumo:
Purpose To evaluate the validity of a uniaxial accelerometer (MTI Actigraph) for measuring physical activity in people with acquired brain injury (ABI) using portable indirect calorimetry (Cosmed K4b(2)) as a criterion measure. Methods Fourteen people with ABI and related gait pattern impairment (age 32 +/- 8 yr) wore an MTI Actigraph that measured activity (counts(.)min-(1)) and a Cosmed K4b(2) that measured oxygen consumption (mL(.)kg(-1.)min(-1)) during four activities: quiet sitting (QS) and comfortable paced (CP), brisk paced (BP), and fast paced (FP) walking. MET levels were predicted from Actigraph counts using a published equation and compared with Cosmed measures. Predicted METs for each of the 56 activity bouts (14 participants X 4 bouts) were classified (light, moderate, vigorous, or very vigorous intensity) and compared with Cosmed-based classifications. Results Repeated-measures ANOVA indicated that walking condition intensities were significantly different (P < 0.05) and the Actigraph detected the differences. Overall correlation between measured and predicted METs was positive, moderate, and significant (r = 0.74). Mean predicted METs were not significantly different from measured for CP and BP, but for FP walking, predicted METs were significantly less than measured (P < 0.05). The Actigraph correctly classified intensity for 76.8% of all activity bouts and 91.5% of light- and moderate-intensity bouts. Conclusions Actigraph counts provide a valid index of activity across the intensities investigated in this study. For light to moderate activity, Actigraph-based estimates of METs are acceptable for group-level analysis and are a valid means of classifying activity intensity. The Actigraph significantly underestimated higher intensity activity, although, in practice, this limitation will have minimal impact on activity measurement of most community-dwelling people with ABI.
Resumo:
We investigated the effects of handling and fixation processes on the two-photon fluorescence spectroscopy of endogenous fluorophors in mouse skeletal muscle. The skeletal muscle was handled in one of two ways: either sectioned without storage or sectioned following storage in a freezer. The two-photon fluorescence spectra measured for different storage or fixation periods show a differential among those samples that were stored in water or were fixed either in formalin or methanol. The spectroscopic results indicate that formalin was the least disruptive fixative, having only a weak effect on the two-photon fluorescence spectroscopy of muscle tissue, whereas methanol had a significant influence on one of the autofluorescence peaks. The two handling processes yielded similar spectral information, indicating no different effects between them.
Resumo:
Second-generation activity monitors have revolutionized the way in which we measure youth physical activity. Use of the monitors avoids the problems associated with self-report methods and allows for the estimation of physical activity patterns over time. This article examines important methodological issues related to the use of activity monitors in children and adolescents.