944 resultados para Water resources development.
Resumo:
During the last several decades, the quality of natural resources and their services have been exposed to significant degradation from increased urban populations combined with the sprawl of settlements, development of transportation networks and industrial activities (Dorsey, 2003; Pauleit et al., 2005). As a result of this environmental degradation, a sustainable framework for urban development is required to provide the resilience of natural resources and ecosystems. Sustainable urban development refers to the management of cities with adequate infrastructure to support the needs of its population for the present and future generations as well as maintain the sustainability of its ecosystems (UNEP/IETC, 2002; Yigitcanlar, 2010). One of the important strategic approaches for planning sustainable cities is „ecological planning‟. Ecological planning is a multi-dimensional concept that aims to preserve biodiversity richness and ecosystem productivity through the sustainable management of natural resources (Barnes et al., 2005). As stated by Baldwin (1985, p.4), ecological planning is the initiation and operation of activities to direct and control the acquisition, transformation, disruption and disposal of resources in a manner capable of sustaining human activities with a minimum disruption of ecosystem processes. Therefore, ecological planning is a powerful method for creating sustainable urban ecosystems. In order to explore the city as an ecosystem and investigate the interaction between the urban ecosystem and human activities, a holistic urban ecosystem sustainability assessment approach is required. Urban ecosystem sustainability assessment serves as a tool that helps policy and decision-makers in improving their actions towards sustainable urban development. There are several methods used in urban ecosystem sustainability assessment among which sustainability indicators and composite indices are the most commonly used tools for assessing the progress towards sustainable land use and urban management. Currently, a variety of composite indices are available to measure the sustainability at the local, national and international levels. However, the main conclusion drawn from the literature review is that they are too broad to be applied to assess local and micro level sustainability and no benchmark value for most of the indicators exists due to limited data availability and non-comparable data across countries. Mayer (2008, p. 280) advocates that by stating "as different as the indices may seem, many of them incorporate the same underlying data because of the small number of available sustainability datasets". Mori and Christodoulou (2011) also argue that this relative evaluation and comparison brings along biased assessments, as data only exists for some entities, which also means excluding many nations from evaluation and comparison. Thus, there is a need for developing an accurate and comprehensive micro-level urban ecosystem sustainability assessment method. In order to develop such a model, it is practical to adopt an approach that uses a method to utilise indicators for collecting data, designate certain threshold values or ranges, perform a comparative sustainability assessment via indices at the micro-level, and aggregate these assessment findings to the local level. Hereby, through this approach and model, it is possible to produce sufficient and reliable data to enable comparison at the local level, and provide useful results to inform the local planning, conservation and development decision-making process to secure sustainable ecosystems and urban futures. To advance research in this area, this study investigated the environmental impacts of an existing urban context by using a composite index with an aim to identify the interaction between urban ecosystems and human activities in the context of environmental sustainability. In this respect, this study developed a new comprehensive urban ecosystem sustainability assessment tool entitled the „Micro-level Urban-ecosystem Sustainability IndeX‟ (MUSIX). The MUSIX model is an indicator-based indexing model that investigates the factors affecting urban sustainability in a local context. The model outputs provide local and micro-level sustainability reporting guidance to help policy-making concerning environmental issues. A multi-method research approach, which is based on both quantitative analysis and qualitative analysis, was employed in the construction of the MUSIX model. First, a qualitative research was conducted through an interpretive and critical literature review in developing a theoretical framework and indicator selection. Afterwards, a quantitative research was conducted through statistical and spatial analyses in data collection, processing and model application. The MUSIX model was tested in four pilot study sites selected from the Gold Coast City, Queensland, Australia. The model results detected the sustainability performance of current urban settings referring to six main issues of urban development: (1) hydrology, (2) ecology, (3) pollution, (4) location, (5) design, and; (6) efficiency. For each category, a set of core indicators was assigned which are intended to: (1) benchmark the current situation, strengths and weaknesses, (2) evaluate the efficiency of implemented plans, and; (3) measure the progress towards sustainable development. While the indicator set of the model provided specific information about the environmental impacts in the area at the parcel scale, the composite index score provided general information about the sustainability of the area at the neighbourhood scale. Finally, in light of the model findings, integrated ecological planning strategies were developed to guide the preparation and assessment of development and local area plans in conjunction with the Gold Coast Planning Scheme, which establishes regulatory provisions to achieve ecological sustainability through the formulation of place codes, development codes, constraint codes and other assessment criteria that provide guidance for best practice development solutions. These relevant strategies can be summarised as follows: • Establishing hydrological conservation through sustainable stormwater management in order to preserve the Earth’s water cycle and aquatic ecosystems; • Providing ecological conservation through sustainable ecosystem management in order to protect biological diversity and maintain the integrity of natural ecosystems; • Improving environmental quality through developing pollution prevention regulations and policies in order to promote high quality water resources, clean air and enhanced ecosystem health; • Creating sustainable mobility and accessibility through designing better local services and walkable neighbourhoods in order to promote safe environments and healthy communities; • Sustainable design of urban environment through climate responsive design in order to increase the efficient use of solar energy to provide thermal comfort, and; • Use of renewable resources through creating efficient communities in order to provide long-term management of natural resources for the sustainability of future generations.
Resumo:
Rigid lenses, which were originally made from glass (between 1888 and 1940) and later from polymethyl methacrylate or silicone acrylate materials, are uncomfortable to wear and are now seldom fitted to new patients. Contact lenses became a popular mode of ophthalmic refractive error correction following the discovery of the first hydrogel material – hydroxyethyl methacrylate – by Czech chemist Otto Wichterle in 1960. To satisfy the requirements for ocular biocompatibility, contact lenses must be transparent and optically stable (for clear vision), have a low elastic modulus (for good comfort), have a hydrophilic surface (for good wettability), and be permeable to certain metabolites, especially oxygen, to allow for normal corneal metabolism and respiration during lens wear. A major breakthrough in respect of the last of these requirements was the development of silicone hydrogel soft lenses in 1999 and techniques for making the surface hydrophilic. The vast majority of contact lenses distributed worldwide are mass-produced using cast molding, although spin casting is also used. These advanced mass-production techniques have facilitated the frequent disposal of contact lenses, leading to improvements in ocular health and fewer complications. More than one-third of all soft contact lenses sold today are designed to be discarded daily (i.e., ‘daily disposable’ lenses).
Resumo:
BACKGROUND There is a growing volume of open source ‘education material’ on energy efficiency now available however the Australian government has identified a need to increase the use of such materials in undergraduate engineering education. Furthermore, there is a reported need to rapidly equip engineering graduates with the capabilities in conducting energy efficiency assessments, to improve energy performance across major sectors of the economy. In January 2013, building on several years of preparatory action-research initiatives, the former Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education (DIICCSRTE) offered $600,000 to develop resources for energy efficiency related graduate attributes, targeting Engineers Australia college disciplines, accreditation requirements and opportunities to address such requirements. PURPOSE This paper discusses a $430,000 successful bid by a university consortium led by QUT and including RMIT, UA, UOW, and VU, to design and pilot several innovative, targeted open-source resources for curriculum renewal related to energy efficiency assessments, in Australian engineering programs (2013-2014), including ‘flat-pack’, ‘media-bites’, ‘virtual reality’ and ‘deep dive’ case study initiatives. DESIGN/ METHOD The paper draws on literature review and lessons learned by the consortium partners in resource development over the last several years to discuss methods for selecting key graduate attributes and providing targeted resources, supporting materials, and innovative delivery options to assist universities deliver knowledge and skills to develop such attributes. This includes strategic industry and key stakeholders engagement. The paper also discusses processes for piloting, validating, peer reviewing, and refining these resources using a rigorous and repeatable approach to engaging with academic and industry colleagues. RESULTS The paper provides an example of innovation in resource development through an engagement strategy that takes advantage of existing networks, initiatives, and funding arrangements, while informing program accreditation requirements, to produce a cost-effective plan for rapid integration of energy efficiency within education. By the conference, stakeholder workshops will be complete. Resources will be in the process of being drafted, building on findings from the stakeholder engagement workshops. Reporting on this project “in progress” provides a significant opportunity to share lessons learned and take on board feedback and input. CONCLUSIONS This paper provides a useful reference document for others considering significant resource development in a consortium approach, summarising benefits and challenges. The paper also provides a basis for documenting the second half of the project, which comprises piloting resources and producing a ‘good practice guide’ for energy efficiency related curriculum renewal.
Resumo:
This article documents the public availability of (i) transcriptome sequence data, assembled and annotated contigs and unigenes, and BLAST hits from the Queensland fruit fly, Bactrocera tryoni; (ii) 75 single-nucleotide variants (SNVs) from 454 sequencing of reduced representation libraries for Phalangiidae harvestmen, Megabunus armatus, Megabunus vignai, Megabunus lesserti, and Rilaena triangularis; and (iii) expressed sequence tags from 454 sequencing of the lepidopterans Lymantria dispar and Lymantria monacha.
Resumo:
A mine site water balance is important for communicating information to interested stakeholders, for reporting on water performance, and for anticipating and mitigating water-related risks through water use/demand forecasting. Gaining accuracy over the water balance is therefore crucial for sites to achieve best practice water management and to maintain their social license to operate. For sites that are located in high rainfall environments the water received to storage dams through runoff can represent a large proportion of the overall inputs to site; inaccuracies in these flows can therefore lead to inaccuracies in the overall site water balance. Hydrological models that estimate runoff flows are often incorporated into simulation models used for water use/demand forecasting. The Australian Water Balance Model (AWBM) is one example that has been widely applied in the Australian context. However, the calibration of AWBM in a mining context can be challenging. Through a detailed case study, we outline an approach that was used to calibrate and validate AWBM at a mine site. Commencing with a dataset of monitored dam levels, a mass balance approach was used to generate an observed runoff sequence. By incorporating a portion of this observed dataset into the calibration routine, we achieved a closer fit between the observed vs. simulated dataset compared with the base case. We conclude by highlighting opportunities for future research to improve the calibration fit through improving the quality of the input dataset. This will ultimately lead to better models for runoff prediction and thereby improve the accuracy of mine site water balances.
Resumo:
While the use of environmental factors in the analysis and prediction of failures of buried reticulation pipes in cold environments has been the focus of extensive work, the same cannot be said for failures occurring on pipes in other (non-freezing) environments. A novel analysis of pipe failures in such an environment is the subject of this paper. An exploratory statistical analysis was undertaken, identifying a peak in failure rates during mid to late summer. This peak was found to correspond to a peak in the rate of circumferential failures, whilst the rate of longitudinal failures remained constant. Investigation into the effect of climate on failure rates revealed that the peak in failure rates occurs due to differential soil movement as the result of shrinkage in expansive soils.
Resumo:
In ecosystems driven by water availability, plant community dynamics depend on complex interactions between vegetation, hydrology, and human water resources use. Along ephemeral rivers—where water availability is erratic—vegetation and people are particularly vulnerable to changes in each other's water use. Sensible management requires that water supply be maintained for people, while preserving ecosystem health. Meeting such requirements is challenging because of the unpredictable water availability. We applied information gap decision theory to an ecohydrological system model of the Kuiseb River environment in Namibia. Our aim was to identify the robustness of ecosystem and water management strategies to uncertainties in future flood regimes along ephemeral rivers. We evaluated the trade-offs between alternative performance criteria and their robustness to uncertainty to account for both (i) human demands for water supply and (ii) reducing the risk of species extinction caused by water mining. Increasing uncertainty of flood regime parameters reduced the performance under both objectives. Remarkably, the ecological objective (species coexistence) was more sensitive to uncertainty than the water supply objective. However, within each objective, the relative performance of different management strategies was insensitive to uncertainty. The ‘best’ management strategy was one that is tuned to the competitive species interactions in the Kuiseb environment. It regulates the biomass of the strongest competitor and, thus, at the same time decreases transpiration, thereby increasing groundwater storage and reducing pressure on less dominant species. This robust mutually acceptable strategy enables species persistence without markedly reducing the water supply for humans. This study emphasises the utility of ecohydrological models for resource management of water-controlled ecosystems. Although trade-offs were identified between alternative performance criteria and their robustness to uncertain future flood regimes, management strategies were identified that help to secure an ecologically sustainable water supply.
Resumo:
The Australian water sector needs to adapt to effectively deal with the impacts of climate change on its systems. Challenges as a result of climate change include increasingly extreme occurrences of weather events including flooding and droughts (Pittock, 2011). In response to such challenges, the National Water Commission in Australia has identified the need for the water sector to transition towards being readily adaptable and able to respond to complex needs for a variety of supply and demand scenarios (National Water Commission, 2013). To successfully make this transition, the sector will need to move away from business as usual, and proactively pursue and adopt innovative approaches and technologies as a means to successfully address the impacts of climate change on the Australian water sector. In order to effectively respond to specific innovation challenges related to the sector, including climate change, it is first necessary to possess a foundational understanding about the key elements related to innovation in the sector. This paper presents this base level understanding, identifying the key barriers, drivers and enablers, and elements for innovative practise in the water sector. After initially inspecting the literature around the challenges stemming from climate change faced by the sector, the paper then examines the findings from the initial two rounds of a modified Delphi study, conducted with experts from the Australian water sector, including participants from research, government and industry backgrounds. The key barriers, drivers and enablers for innovation in the sector identified during the initial phase of the study formed the basis for the remainder of the investigation. Key elements investigated were: barriers – scepticism, regulation systems, inconsistent policy; drivers – influence of policy, resource scarcity, thought leadership; enablers – framing the problem, effective regulations, community acceptance. There is a convincing argument for the water sector transitioning to a more flexible, adaptive and responsive system in the face of challenges resulting from climate change. However, without first understanding the challenges and opportunities around making this transition, the likelihood of success is limited. For that reason, this paper takes the first step in understanding the elements surrounding innovation in the Australian water sector.
Resumo:
Problem of water scarcity has been increasingly severe in China. Though industrial sectors play important role for the rapid economic growth, and they consumes water and discharge wastewater. The purpose of this study is to examine the efficiency of water use and wastewater discharge in comparison with those of other inputs and production output in Chinese industry. Measuring efficiency of each input and output factor from 2002 to 2008, we find the average inefficiencies of industrial water use and industrial wastewater discharge are higher than those of capital, labor, and production output in China. In addition, the productivity levels to save water in the water shortage areas are not higher compared to the others. The water use inefficiency has a high dispersion especially in the regions where the amounts of water resources per capita is less than 3000 cubic meter.
Resumo:
A fuzzy waste-load allocation model, FWLAM, is developed for water quality management of a river system using fuzzy multiple-objective optimization. An important feature of this model is its capability to incorporate the aspirations and conflicting objectives of the pollution control agency and dischargers. The vagueness associated with specifying the water quality criteria and fraction removal levels is modeled in a fuzzy framework. The goals related to the pollution control agency and dischargers are expressed as fuzzy sets. The membership functions of these fuzzy sets are considered to represent the variation of satisfaction levels of the pollution control agency and dischargers in attaining their respective goals. Two formulations—namely, the MAX-MIN and MAX-BIAS formulations—are proposed for FWLAM. The MAX-MIN formulation maximizes the minimum satisfaction level in the system. The MAX-BIAS formulation maximizes a bias measure, giving a solution that favors the dischargers. Maximization of the bias measure attempts to keep the satisfaction levels of the dischargers away from the minimum satisfaction level and that of the pollution control agency close to the minimum satisfaction level. Most of the conventional water quality management models use waste treatment cost curves that are uncertain and nonlinear. Unlike such models, FWLAM avoids the use of cost curves. Further, the model provides the flexibility for the pollution control agency and dischargers to specify their aspirations independently.
Resumo:
Water temperature measurements from Wivenhoe Dam offer a unique opportunity for studying fluctuations of temperatures in a subtropical dam as a function of time and depth. Cursory examination of the data indicate a complicated structure across both time and depth. We propose simplifying the task of describing these data by breaking the time series at each depth into physically meaningful components that individually capture daily, subannual, and annual (DSA) variations. Precise definitions for each component are formulated in terms of a wavelet-based multiresolution analysis. The DSA components are approximately pairwise uncorrelated within a given depth and between different depths. They also satisfy an additive property in that their sum is exactly equal to the original time series. Each component is based upon a set of coefficients that decomposes the sample variance of each time series exactly across time and that can be used to study both time-varying variances of water temperature at each depth and time-varying correlations between temperatures at different depths. Each DSA component is amenable for studying a certain aspect of the relationship between the series at different depths. The daily component in general is weakly correlated between depths, including those that are adjacent to one another. The subannual component quantifies seasonal effects and in particular isolates phenomena associated with the thermocline, thus simplifying its study across time. The annual component can be used for a trend analysis. The descriptive analysis provided by the DSA decomposition is a useful precursor to a more formal statistical analysis.
Resumo:
The aim of this study is to examine the relationship of the Roman villa to its environment. The villa was an important feature of the countryside intended both for agricultural production and for leisure. Manuals of Roman agriculture give instructions on how to select a location for an estate. The ideal location was a moderate slope facing east or south in a healthy area and good neighborhood, near good water resources and fertile soils. A road or a navigable river or the sea was needed for transportation of produce. A market for selling the produce, a town or a village, should have been nearby. The research area is the surroundings of the city of Rome, a key area for the development of the villa. The materials used consist of archaeological settlement sites, literary and epigraphical evidence as well as environmental data. The sites include all settlement sites from the 7th century BC to 5th century AD to examine changes in the tradition of site selection. Geographical Information Systems were used to analyze the data. Six aspects of location were examined: geology, soils, water resources, terrain, visibility/viewability and relationship to roads and habitation centers. Geology was important for finding building materials and the large villas from the 2nd century BC onwards are close to sources of building stones. Fertile soils were sought even in the period of the densest settlement. The area is rich in water, both rainfall and groundwater, and finding a water supply was fairly easy. A certain kind of terrain was sought over very long periods: a small spur or ridge shoulder facing preferably south with an open area in front of the site. The most popular villa resorts are located on the slopes visible from almost the entire Roman region. A visible villa served the social and political aspirations of the owner, whereas being in the villa created a sense of privacy. The area has a very dense road network ensuring good connectivity from almost anywhere in the region. The best visibility/viewability, dense settlement and most burials by roads coincide, creating a good neighborhood. The locations featuring the most qualities cover nearly a quarter of the area and more than half of the settlement sites are located in them. The ideal location was based on centuries of practical experience and rationalized by the literary tradition.
Resumo:
The coal seam gas (CSG) industry is globally of potentially great importance economically. This study exemplifies the complex relationship between land use and management, groundwater impact and associated water treatment especially in relation to Queensland where a significant increase in the amount of gas extracted over the past 6 years has occurred. In order to effectively manage the environmental impact of the CSG industry it is necessary to appropriately understand the nature of the gas deposits, methods for gas collection, the physicochemical composition of the by-product associated water and the technologies available for water remediation. Australia is mainly considered arid and semi-arid and thus there is a need to not only beneficially reuse water resources but also protect existing ground water reservoirs such as the Great Artesian Basin (GAB). This paper focussed primarily on the Surat Basin located in Queensland and northern New South Wales. The mechanism for CSG formation, relation to local geological features, extraction approach and the potential impact/benefits of associated water was discussed. An outline of the current legislative requirements on physical and chemical properties of associated water in the Surat Basin was also provided, as well as the current treatment technologies used by the major CSG companies. This review was of significance in relation to the formulation of the most appropriate and cost effective management of associated water, while simultaneously preserving existing water resources and the environment.
Resumo:
The estuaries of Australia s tropical rivers support commercial fisheries for finfish and shellfish valued at over $220 million per annum. There are also significant tourism-related and local recreational and indigenous fisheries for icon species such as barramundi. Development of water resources in Australia's Tropical Rivers region is being considered for the Flinders, Mitchell, McArthur, Roper, Daly and Victoria catchments. Greater knowledge of the freshwater requirements of tropical aquatic ecosystems, including estuaries is crucial, so that the communities of catchments where water resource development occurs can be assured that the downstream effects of such development are considered and managed based on the best available knowledge.
Resumo:
Many aquatic species are linked to environmental drivers such as temperature and salinity through processes such as spawning, recruitment and growth. Information is needed on how fished species may respond to altered environmental drivers under climate change so that adaptive management strategies can be developed. Barramundi (Lates calcarifer) is a highly prized species of the Indo-West Pacific, whose recruitment and growth is driven by river discharge. We developed a monthly age- and length-structured population model for barramundi. Monte Carlo Markov Chain simulations were used to explore the population's response to altered river discharges under modelled total licenced water abstraction and projected climate change, derived and downscaled from Global Climate Model A1FI. Mean values of exploitable biomass, annual catch, maximum sustainable yield and spawning stock size were significantly reduced under scenarios where river discharge was reduced; despite including uncertainty. These results suggest that the upstream use of water resources and climate change have potential to significantly reduce downstream barramundi stock sizes and harvests and may undermine the inherent resilience of estuarine-dependent fisheries. © 2012 CSIRO.