999 resultados para Volume holographic lenses
Resumo:
The two-dimensional grid patterns on Si(001) in nanometer scale have been fabricated by holographic lithography and reactive ion etching, which can be used as a substrate for positioning Ge islands during self-assembled epitaxy to obtain an ordered Ge quantum dots matrix. By changing the configuration of the holographic lithography and the etching rate and time, we can control the grid period, the shape of the pattern cell, and the orientation of those shapes, respectively. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We demonstrate room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers emitting at 4.7 mu m. A rectangular photonic crystal lattice perpendicular to the cleaved facet was defined using holographic lithography. The anticrossing of the index- and Bragg-guided dispersions of rectangular lattice forms the band-edge mode with extended mode volume and reduced group velocity. Utilizing this coupling mechanism, single mode operation with a near-diffractive-limited divergence angle of 12 degrees is obtained for 33 mu m wide devices in a temperature range of 85-300 K. The reduced threshold current densities and improved heat dissipation management contribute to the realization of devices' room temperature operation.
Resumo:
Optical films containing the genetic variant bacteriorhodopsin BR-D96N were experimentally studied in view of their properties as media for holographic storage. Different polarization recording schemes were tested and compared. The influence of the polarization states of the recording and readout waves on the retrieved diffractive image's intensity and its signal-to-noise ratio were analyzed. The experimental results showed that, compared with the other tested polarization relations during holographic recording, the discrimination between the polarization states of diffracted and scattered light is optimized with orthogonal circular polarization of the recording beams, and thus a high signal-to-noise ratio and a high diffraction efficiency are obtained. Using a He-Ne laser (633 nm, 3 mW) for recording and readout, a spatial light modulator as a data input element, and a 2D-CCD sensor for data capture in a Fourier-transform holographic setup, a storage density of 2 x 10(8) bits/cm(2) was obtained on a 60 x 42 mu m(2) area in the BR-D96N film. The readout of encoded binary data was possible with a zero-error rate at the tested storage density. (c) 2005 Optical Society of America.
Resumo:
Photochromic diarylethene, 1,2-bis[2-methyl-5-(3-fluorophenyl)-3-thienyl] perfluorocyleopentene (1a), was synthesized. The compound showed good photochromic reactions both in solution and in PMMA matrix by photo-irradiation. Using the diarylethene lb/PMMA film as recording medium and a He-Ne laser for recording and readout, four types of polarization holographic optical recording were accomplished for the first time. The results show that the orthogonal circular polarization recording is the best method for holographic optical recording when the target photochromic diarylethene is used as recording material. (c) 2006 Published by Elsevier B.V.
Resumo:
A novel photochromic, diarylethene with 2,5-dihydrothiophene bridging unit la was synthesized, and the photochromic properties of 1 were also investigated. It showed that I exhibited excellent ring-open and ring-closed photochromism with UV/vis light irradiation. Holographic recording was measured by employing the thin film of PMMA-diarylethene 1 as recording media. It showed that six different images were recorded in the same place on the sample with the dimension of 64 mu m x 42 mu m by the intersecting of the object beam and a reference beam with an intensity of 15 mW/cm(2), and the stored information was readout by the attenuated reference beam with an intensity of 0.5 mW/cm(2). In addition, preliminary investigations showed that the material was thermally stable and fatigue resistant. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
(N-4'-methoxy-2-methyl-5-phenyl)-3-pyrryl-ethylidene (isopropylidene) succinic anhydride fulgide, doped in PMMA matrix, exhibits photochromic behavior. The fatigue resistance experiment shows no photodegradation is detected after more than 450 writing-erasing cycles. Study of fulgide material for holographic recording media shows the optimal exposure and the diffraction efficiency is 1047 mJ/cm(2) and 2.26%, respectively, with 10 mum thickness polymer film. Holographic grating with 1680 lines/mm at writing angle theta = 30degrees is also obtained. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A new unsymmetrical photochromic diarylethene 1a is synthesized, and the photochromic properties of it are also investigated. The compound exhibits good photochromism with UV/ visible light irradiation. Compound 1a in polymethyl methacrylate ( PMMA ) film changes color upon 313- nm light irradiation from colorless to blue, in which the absorption maximum is observed at 587 nm. Photon- mode polarization multiplexing holographic optical recording is performed successfully using this compound as a recording medium. In the diarylethene 1b/ PMMA film, polarization multiplexing hologram recording and retrieval, and a combination with the angular multiplexing scheme, are demonstrated systematically. The results indicate that recording capacity can be significantly improved with the combined method of polarization and angular multiplexing holographic recording. (C) 2008 Society of Photo- Optical Instrumentation Engineers.
Resumo:
We present a detail investigation on the development of a series of gradient index (GRIN) optical glass microlens and polymer microlens and microlens arrays in our laboratory in recent years. The special glass material GRIN lenses have been fabricated mainly by using ion-exchange technology, which are applied to construct micro-optic devices and other applications. On one hand, we demonstrated the light propagation and imaging properties of GRIN lenses and the results analyzed. On the other hand, we have explored a drop-on-demand ink-jet printing method to produce microlens array using nano-scale polymer droplets involved with a uniform ultraviolet light and heat solidifying process. The experimental setup for manufacturing polymer microlens array and the performance of refractive microlens elements are also given in this paper. (C) 2006 Elsevier GmbH. All rights reserved.
Resumo:
A new fabricating method is demonstrated to realize two different Bragg gratings in an identical chip using traditional holographic exposure. Polyimide is used to protect one Bragg grating during the first period. The technical process of this method is as simple as that of standard holographic exposure
Resumo:
In order to design and fabricate a spectrometer for the infrared range widely used in the different applications, Volume Phase Grating (VPG) with. low Polarization Dependence Loss (PDL) and high efficiency has been adopted as the dispersion element. VPG is constructed by coating an optical substrate with a thin film of dichromated. gelatin and exposing the film to two mutually coherent laser beams to form index modulation. The diffraction efficiency for a VPG is governed by Bragg effects. The depth (d) and index modulation contrast of the grating structure control the efficiency at which the light is diffracted when the Bragg condition is satisfied. Gradient index lens with high performance and low aberration are used as collimating system instead of standard lens. The spot diagrams and MTF curve of the collimating lens are shown in the paper. The receive system is InCaAs photodiode (PD) array including 512 pixels with 25 mum pitch. The spectrum resolution of the spectrometer reaches to 0.2nm and wavelength accuracy is 40pm.
Resumo:
Three-point bending experiments were performed on as-cast and annealed samples of Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105) bulk metallic glasses over a wide range of temperatures varying from room temperature (293 K) to liquid nitrogen temperature (77 K). The results demonstrated that the free volume decrease due to annealing and/or cryogenic temperature can reduce the propensity for the formation of multiple shear bands and hence deteriorate plastic deformation ability. We clearly observed a sharp ductile-to-brittle transition (DBT), across which microscopic fracture feature transfers from micro-scale vein patterns to nano-scale periodic corrugations. Macroscopically, the corresponding fracture mode changes from ductile shear fracture to brittle tensile fracture. The shear transformation zone volume, taking into account free volume, temperature and strain rate, is proposed to quantitatively characterize the DBT behavior in fracture of metallic glasses.