922 resultados para Visco-elastic fluid
Resumo:
Deuterium (dD) and oxygen (d18O) isotopes are powerful tracers of the hydrological cycle and have been extensively used for paleoclimate reconstructions as they can provide information on past precipitation, temperature and atmospheric circulation. More recently, the use of 17Oexcess derived from precise measurement of d17O and d18O gives new and additional insights in tracing the hydrological cycle whereas uncertainties surround this proxy. However, 17Oexcess could provide additional information on the atmospheric conditions at the moisture source as well as about fractionations associated with transport and site processes. In this paper we trace water stable isotopes (dD, d17O and d18O) along their path from precipitation to cave drip water and finally to speleothem fluid inclusions for Milandre cave in northwestern Switzerland. A two year-long daily resolved precipitation isotope record close to the cave site is compared to collected cave drip water (3 months average resolution) and fluid inclusions of modern and Holocene stalagmites. Amount weighted mean dD, d18O and d17O are �71.0‰, �9.9‰, �5.2‰ for precipitation, �60.3‰, �8.7‰, �4.6‰ for cave drip water and �61.3‰, �8.3‰, �4.7‰ for recent fluid inclusions respectively. Second order parameters have also been derived in precipitation and drip water and present similar values with 18 per meg for 17Oexcess whereas d-excess is 1.5‰ more negative in drip water. Furthermore, the atmospheric signal is shifted towards enriched values in the drip water and fluid inclusions (D of ~ þ 10‰ for dD). The isotopic composition of cave drip water exhibits a weak seasonal signal which is shifted by around 8e10 months (groundwater residence time) when compared to the precipitation. Moreover, we carried out the first d17O measurement in speleothem fluid inclusions, as well as the first comparison of the d17O behaviour from the meteoric water to the fluid inclusions entrapment in speleothems. This study on precipitation, drip water and fluid inclusions will be used as a speleothem proxy calibration for Milandre cave in order to reconstruct paleotemperatures and moisture source variations for Western Central Europe.
Resumo:
Background: Aggressive periodontitis is a specific form of periodontal disease that is characterized by rapid attachment loss and bone destruction. Cytokine profiles are of considerable value when studying disease course during treatment. The aim of this trial was to investigate cytokine levels in the gingival crevicular fluid (GCF) of patients with aggressive periodontitis, after treatment with photodynamic therapy (PDT) or scaling and root planing (SRP), in a split-mouth design on -7, 0, +1, +7, +30, and +90 days. Methods: Ten patients were randomly treated with PDT using a laser source associated with a photosensitizer or SRP with hand instruments. GCF samples were collected, and the concentrations of tumor necrosis factor-alpha (TNF-alpha) and receptor activator of nuclear factor-kappa B ligand (RANKL) were determined by enzyme-linked immunosorbent assays. The data were analyzed using generalized estimating equations to test the associations among treatments, evaluated parameters, and experimental times (alpha = 0.05). Results: Non-surgical periodontal treatment with PDT or SRP led to statistically significant reductions in TNF-alpha level 30 days following treatment. There were similar levels of TNF-alpha and RANKL at the different time points in both groups, with no statistically significant differences. Conclusion: SRP and PDT had similar effects on crevicular TNF-alpha and RANKL levels in patients with aggressive periodontitis. J Periodontol 2009;80:98-105.
Resumo:
Introduction: Orthodontic tooth movement uses mechanical forces that result in inflammation in the first days. Myeloperoxidase (MPO) is an enzyme found in polymorphonuclear neutrophil (PMN) granules, and it is used to estimate the number of PMN granules in tissues. So far, MPO has not been used to study the inflammatory alterations after the application of orthodontic tooth movement forces. The aim of this study was to determine MPO activity in the gingival crevicular fluid (GCF) and saliva (whole stimulated saliva) of orthodontic patients at different time points after fixed appliance activation. Methods: MPO was determined in the GCF and collected by means of periopaper from the saliva of 14 patients with orthodontic fixed appliances. GCF and saliva samples were collected at baseline, 2 hours, and 7 and 14 days after application of the orthodontic force. Results: Mean MPO activity was increased in both the GCF and saliva of orthodontic patients at 2 hours after appliance activation (P<0.02 for all comparisons). At 2 hours, PMN infiltration into the periodontal ligament from the orthodontic force probably results in the increased MPO level observed at this time point. Conclusions: MPO might be a good marker to assess inflammation in orthodontic movement; it deserves further studies in orthodontic therapy. (Am J Orthod Dentofacial Orthop 2010;138:613-6)
Resumo:
Supercritical carbon dioxide (SC-CO(2)) extractions of Brazilian cherry (Eugenia uniflora L.) were carried out under varied conditions of pressure and temperature, according to a central composite 2(2) experimental design, in order to produce flavour-rich extracts. The composition of the extracts was evaluated by gas chromatography coupled with mass spectrometry (GC/MS). The abundance of the extracted compounds was then related to sensory analysis results, assisted by principal component and factorial discriminant analysis (PCA and FDA, respectively). The identified sesquiterpenes and ketones were found to strongly contribute to the characteristic flavour of the Brazilian cherry. The extracts also contained a variety of other volatile compounds, and part of the fruit wax contained long-chain hydrocarbons that according to multivariate analysis, contributed to the yield of the extracts, but not the flavour. Volatile phenolic compounds, to which antioxidant properties are attributed, were also present in the extracts in high proportion, regardless of the extraction conditions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to select the optimal operational conditions for the production of instant soy protein isolate (SPI) by pulsed fluid bed agglomeration. The spray-dried SPI was characterized as being a cohesive powder, presenting cracks and channeling formation during its fluidization (Geldart type A). The process was carried out in a pulsed fluid bed, and aqueous maltodextrin solution was used as liquid binder. Air pulsation, at a frequency of 600 rpm, was used to fluidize the cohesive SPI particles and to allow agglomeration to occur. Seventeen tests were performed according to a central composite design. Independent variables were (i) feed flow rate (0.5-3.5 g/min), (ii) atomizing air pressure (0.5-1.5 bar) and (iii) binder concentration (10-50%). Mean particle diameter, process yield and product moisture were analyzed as responses. Surface response analysis led to the selection of optimal operational parameters, following which larger granules with low moisture content and high process yield were produced. Product transformations were also evaluated by the analysis of size distribution, flowability, cohesiveness and wettability. When compared to raw material, agglomerated particles were more porous and had a more irregular shape, presenting a wetting time decrease, free-flow improvement and cohesiveness reduction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The rise in boiling point of blackberry juice was experimentally measured at soluble solids concentrations in the range of 9.4 to 58.4Brix and pressures between 4.9 103 and 9.0 104 Pa (abs.). Different approaches to representing experimental data, including the Duhring`s rule, a model similar to Antoine equation and other empirical models proposed in the literature were tested. In the range of 9.4 to 33.6Brix, the rise in boiling point was nearly independent of pressure, varying only with juice concentration. Considerable deviations of this behavior began to occur at concentrations higher than 39.1Brix. Experimental data could be best predicted by adjusting an empirical model, which consists of a single equation that takes into account the dependence of rise in boiling point on pressure and concentration.
Resumo:
P>Estimates of effective elastic thickness (T(e)) for the western portion of the South American Plate using, independently, forward flexural modelling and coherence analysis, suggest different thermomechanical properties for the same continental lithosphere. We present a review of these T(e) estimates and carry out a critical reappraisal using a common methodology of 3-D finite element method to solve a differential equation for the bending of a thin elastic plate. The finite element flexural model incorporates lateral variations of T(e) and the Andes topography as the load. Three T(e) maps for the entire Andes were analysed: Stewart & Watts (1997), Tassara et al. (2007) and Perez-Gussinye et al. (2007). The predicted flexural deformation obtained for each T(e) map was compared with the depth to the base of the foreland basin sequence. Likewise, the gravity effect of flexurally induced crust-mantle deformation was compared with the observed Bouguer gravity. T(e) estimates using forward flexural modelling by Stewart & Watts (1997) better predict the geological and gravity data for most of the Andean system, particularly in the Central Andes, where T(e) ranges from greater than 70 km in the sub-Andes to less than 15 km under the Andes Cordillera. The misfit between the calculated and observed foreland basin subsidence and the gravity anomaly for the Maranon basin in Peru and the Bermejo basin in Argentina, regardless of the assumed T(e) map, may be due to a dynamic topography component associated with the shallow subduction of the Nazca Plate beneath the Andes at these latitudes.
Resumo:
The objectives of this study were to investigate the presence of the three neurofilament subunits, ubiquitin, proteasome and 3-nitrotyrosine, in CSF samples of ALS patients. CSF samples were obtained by lumbar puncture from 10 ALS patients and six controls. All samples were analysed by Western blotting. Results revealed that neurofilament heavy subunit was identified in 70% of ALS cases and we conclude that this subunit may be a promising biomarker for clinical diagnosis of ALS.
Resumo:
In various attempts to relate the behaviour of highly-elastic liquids in complex flows to their rheometrical behaviour, obvious candidates for study have been the variation of shear viscosity with shear rate, the two normal stress differences N(1) and N(2), especially N(1), the extensional viscosity, and the dynamic moduli G` and G ``. In this paper, we shall confine attention to `constant-viscosity` Boger fluids, and, accordingly, we shall limit attention to N(1), eta(E), G` and G ``. We shall concentrate on the ""splashing"" problem (particularly that which arises when a liquid drop falls onto the free surface of the same liquid). Modern numerical techniques are employed to provide the theoretical predictions. We show that high eta(E) can certainly reduce the height of the so-called Worthington jet, thus confirming earlier suggestions, but other rheometrical influences (steady and transient) can also have a role to play and the overall picture may not be as clear as it was once envisaged. We argue that this is due in the main to the fact that splashing is a manifestly unsteady flow. To confirm this proposition, we obtain numerical simulations for the linear Jeffreys model. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In various attempts to relate the behaviour of highly-elastic liquids in complex flows to their rheometrical behaviour, obvious candidates for study have been the variation of shear viscosity with shear rate, the two normal stress differences N(1) and N(2) especially N(1), and the extensional viscosity eta(E). In this paper, we shall be mainly interested in `constant-viscosity` Boger fluids, and, accordingly, we shall limit attention to N(1) and eta(E). We shall concentrate on two important flows - axisymmetric contraction flow and ""splashing"" (particularly that which arises when a liquid drop falls onto the free Surface of the same liquid). Modem numerical techniques are employed to provide the theoretical predictions. It is shown that the two obvious manifestations of viscoelastic rheometrical behaviour can sometimes be opposing influences in determining flow characteristics. Specifically, in an axisymmetric contraction flow, high eta(E) , can retard the flow, whereas high N(1) can have the opposite effect. In the splashing experiment, high eta(E) can certainly reduce the height of the so-called Worthington jet, thus confirming some early suggestions, but, again, other rheometrical influences can also have a role to play and the overall picture may not be as clear as it was once envisaged.
Resumo:
Dispersions of saturated anionic phospholipid dimyristoyl phosphatidylglycerol (DMPG) have been extensively studied regarding their peculiar thermostructural behavior. At low ionic strength, the gel-fluid transition is spread along nearly 17 degrees C, displaying several thermal events in the calorimetric profile that is quite different from the single sharp peak around 23 degrees C found for higher ionic strength DMPG dispersions. To investigate the role of charge in the bilayer transition, we carefully examine the temperature dependence of the electrical conductivity of DMPG dispersions at different concentrations, correlating the data with the corresponding differential scanning calorimetry (DSC) traces. Electrical conductivity together with electrophoretic mobility measurements allowed the calculation of the dependence of the degree of ionization of DMPG vesicles on lipid concentration and temperature. It was shown that there is a decrease in vesicle charge as the lipid concentration increases, which is probably correlated with the increase in the concentration of bulk Na(+). Apart from the known increase in the electrical conductivity along the DMPG temperature transition region, a sharp rise was observed at the bilayer pretransition for all lipid concentrations studied, possibly indicating that the beginning of the chain melting process is associated with an increase in bilayer ionization. It is confirmed here that the gel-fluid transition of DMPG at low ionic strength is accompanied by a huge increase in the dispersion viscosity. However, it is shown that this measured macroviscosity is distinct from the local viscosity felt by either charged ions or DMPG charged aggregates in measurements of electrical conductivity or electrophoretic mobility, Data presented here give support to the idea that DMPG vesicles, at low ionic strength, get more ionized along the temperature transition region and could be perforated and/or deformed vesicle structures.
Resumo:
The angular distributions for elastic scattering and breakup of halo nuclei are analysed using a near-side/far-side decomposition within the framework of the dynamical eikonal approximation. This analysis is performed for (11)Be impinging on Pb at 69 MeV/nucleon. These distributions exhibit very similar features. In particular they are both near-side dominated, as expected from Coulomb-dominated reactions. The general shape of these distributions is sensitive mostly to the projectile-target interactions, but is also affected by the extension of the halo. This suggests the elastic scattering not to be affected by a loss of flux towards the breakup channel. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The (16)O+(27)Al elastic and inelastic angular distributions have been measured in a broad angular range (13 degrees < theta(lab) < 52 degrees) at about 100 MeV incident energy. The use of the MAGNEX large acceptance magnetic spectrometer and of the ray-reconstruction analysis technique has been crucial in order to provide, in the same experiment, high-resolution energy spectra and cross-section measurements distributed over more than seven orders of magnitude down to hundreds of nb/sr. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We study the effects of several approximations commonly used in coupled-channel analyses of fusion and elastic scattering cross sections. Our calculations are performed considering couplings to inelastic states in the context of the frozen approximation, which is equivalent to the coupled-channel formalism when dealing with small excitation energies. Our findings indicate that, in some cases, the effect of the approximations on the theoretical cross sections can be larger than the precision of the experimental data.