934 resultados para Vacuolar membrane ABC transporters
Resumo:
Surfactants are among the most versatile and widely used excipients in pharmaceuticals. This versatility, together with their pH-responsive membrane-disruptive activity and low toxicity, could also enable their potential application in drug delivery systems. Five anionic lysine-based surfactants which differ in the nature of their counterion were studied. Their capacity to disrupt the cell membrane was examined under a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model for endosomal membranes. The surfactants showed pH-sensitive hemolytic activity and improved kinetics at the endosomal pH range. Low concentrations resulted in negligible hemolysis at physiological pH and high membrane lytic activity at pH 5.4, which is in the range characteristic of late endosomes. With increasing concentration, the surfactants showed an enhanced capacity to lyse cell membranes, and also caused significant membrane disruption at physiological pH. This observation indicates that, at high concentrations, surfactant behavior is independent of pH. The mechanism of surfactant-mediated membrane destabilization was addressed, and scanning electron microscopy studies were also performed to evaluate the effects of the compounds on erythrocyte morphology as a function of pH. The in vitro cytotoxicity of the surfactants was assessed by MTT and NRU assays with the 3T3 cell line. The influence of different types of counterion on hemolytic activity and the potential applications of these surfactants in drug delivery are discussed. The possibility of using pH-sensitive surfactants for endosome disruption could hold great promise for intracellular drug delivery systems in future therapeutic applications.
Resumo:
Spiroplasmas are helical and motile members of a cell wall-less eubacterial group called Mollicutes. Although all spiroplasmas are associated with arthropods, they exhibit great diversity with respect to both their modes of transmission and their effects on their hosts; ranging from horizontally transmitted pathogens and commensals to endosymbionts that are transmitted transovarially (i.e., from mother to offspring). Here we provide the first genome sequence, along with proteomic validation, of an endosymbiotic inherited Spiroplasma bacterium, the Spiroplasma poulsonii MSRO strain harbored by Drosophila melanogaster. Comparison of the genome content of S. poulsonii with that of horizontally transmitted spiroplasmas indicates that S. poulsonii has lost many metabolic pathways and transporters, demonstrating a high level of interdependence with its insect host. Consistent with genome analysis, experimental studies showed that S. poulsonii metabolizes glucose but not trehalose. Notably, trehalose is more abundant than glucose in Drosophila hemolymph, and the inability to metabolize trehalose may prevent S. poulsonii from overproliferating. Our study identifies putative virulence genes, notably, those for a chitinase, the H2O2-producing glycerol-3-phosphate oxidase, and enzymes involved in the synthesis of the eukaryote-toxic lipid cardiolipin. S. poulsonii also expresses on the cell membrane one functional adhesion-related protein and two divergent spiralin proteins that have been implicated in insect cell invasion in other spiroplasmas. These lipoproteins may be involved in the colonization of the Drosophila germ line, ensuring S. poulsonii vertical transmission. The S. poulsonii genome is a valuable resource to explore the mechanisms of male killing and symbiont-mediated protection, two cardinal features of many facultative endosymbionts. IMPORTANCE: Most insect species, including important disease vectors and crop pests, harbor vertically transmitted endosymbiotic bacteria. These endosymbionts play key roles in their hosts' fitness, including protecting them against natural enemies and manipulating their reproduction in ways that increase the frequency of symbiont infection. Little is known about the molecular mechanisms that underlie these processes. Here, we provide the first genome draft of a vertically transmitted male-killing Spiroplasma bacterium, the S. poulsonii MSRO strain harbored by D. melanogaster. Analysis of the S. poulsonii genome was complemented by proteomics and ex vivo metabolic experiments. Our results indicate that S. poulsonii has reduced metabolic capabilities and expresses divergent membrane lipoproteins and potential virulence factors that likely participate in Spiroplasma-host interactions. This work fills a gap in our knowledge of insect endosymbionts and provides tools with which to decipher the interaction between Spiroplasma bacteria and their well-characterized host D. melanogaster, which is emerging as a model of endosymbiosis.
Resumo:
Activating mutations in the K-Ras small GTPase are extensively found in human tumors. Although these mutations induce the generation of a constitutively GTP-loaded, active form of K-Ras, phosphorylation at Ser181 within the C-terminal hypervariable region can modulate oncogenic K-Ras function without affecting the in vitro affinity for its effector Raf-1. In striking contrast, K-Ras phosphorylated at Ser181 shows increased interaction in cells with the active form of Raf-1 and with p110α, the catalytic subunit of PI 3-kinase. Because the majority of phosphorylated K-Ras is located at the plasma membrane, different localization within this membrane according to the phosphorylation status was explored. Density-gradient fractionation of the plasma membrane in the absence of detergents showed segregation of K-Ras mutants that carry a phosphomimetic or unphosphorylatable serine residue (S181D or S181A, respectively). Moreover, statistical analysis of immunoelectron microscopy showed that both phosphorylation mutants form distinct nanoclusters that do not overlap. Finally, induction of oncogenic K-Ras phosphorylation - by activation of protein kinase C (PKC) - increased its co-clustering with the phosphomimetic K-Ras mutant, whereas (when PKC is inhibited) non-phosphorylated oncogenic K-Ras clusters with the non-phosphorylatable K-Ras mutant. Most interestingly, PI 3-kinase (p110α) was found in phosphorylated K-Ras nanoclusters but not in non-phosphorylated K-Ras nanoclusters. In conclusion, our data provide - for the first time - evidence that PKC-dependent phosphorylation of oncogenic K-Ras induced its segregation in spatially distinct nanoclusters at the plasma membrane that, in turn, favor activation of Raf-1 and PI 3-kinase.
Resumo:
Acquisition of phosphate from the soil and its distribution across plant tissues, as well as between the cytosol and organelles, is dependent on an array of transporters, which include proton-phosphate cotransporters belonging to the family of PHT proteins, the PHO1 phosphate exporter, as well as organellar phosphate exchangers. The expression of these transporters is regulated both at the transcriptional and post-transcriptional levels, and their activity and localisation is controlled by modifications such as phosphorylation and ubiquitination. Proteins including the PHR1 and WRKY6 transcription factors, PHO2 and NLA involved in ubiquitination, as well as SPX proteins, form a network which enables plants to regulate phosphate transport activity under both nutrient-sufficient and -deficient conditions, allowing them to survive, grow and produce seeds under adverse conditions.
Resumo:
The membrane-bound serine protease CAP2/Tmprss4 has been previously identified in vitro as a positive regulator of the epithelial sodium channel (ENaC). To study its in vivo implication in ENaC-mediated sodium absorption, we generated a knockout mouse model for CAP2/Tmprss4. Mice deficient in CAP2/Tmprss4 were viable, fertile, and did not show any obvious histological abnormalities. Unexpectedly, when challenged with sodium-deficient diet, these mice did not develop any impairment in renal sodium handling as evidenced by normal plasma and urinary sodium and potassium electrolytes, as well as normal aldosterone levels. Despite minor alterations in ENaC mRNA expression, we found no evidence for altered proteolytic cleavage of ENaC subunits. In consequence, ENaC activity, as monitored by the amiloride-sensitive rectal potential difference (ΔPD), was not altered even under dietary sodium restriction. In summary, ENaC-mediated sodium balance is not affected by lack of CAP2/Tmprss4 expression and thus, does not seem to directly control ENaC expression and activity in vivo.
Resumo:
Membrane proteins account for about 20% to 30% of all proteins encoded in a typical genome. They play central roles in multiple cellular processes mediating the interaction of the cell with its surrounding. Over 60% of all drug targets contain a membrane domain. The experimental difficulties of obtaining a crystal structural severely limits our ability or understanding of membrane protein function. Computational evolutionary studies of proteins are crucial for the prediction of 3D structures. In this project, we construct a tool able to quantify the evolutionary positive selective pressure on each residue of membrane proteins through maximum likelihood phylogeny reconstruction. The conservation plot combined with a structural homology model is also a potent tool to predict those residues that have essentials roles in the structure and function of a membrane protein and can be very useful in the design of validation experiments.
Resumo:
The action of botulinum neurotoxin on acetylcholine release, and on the structural changes at the presynaptic membrane associated with the transmitter release,was studied by using a subcellular fraction of cholinergic nerve terminals (synaptosomes) isolated from the Torpedo electric organ. Acetylcholine and ATP release were continuously monitored by chemiluminescent methods.To catch the membrane morphological changes, the quick-freezing method was applied. Our results show that botulinum neurotoxin inhibits the release of acetylcholine from these isolated nerve terminals in a dose-dependent manner, whereas ATP release is not affected. The maximal inhibition (70%) is achieved at neurotoxin concentrations as low as 125 pM with an incubation time of 6 min. This effect is not linked to an alteration of the integrity of the synaptosomes since, after poisoning by botulinum neurotoxin type A, they show a nonmodified occluded lactate dehydrogenase activity. Moreover, membrane potential is not altered by the toxin with respect to the control, either in resting condition or after potassium depolarization. In addition to acetylcholine release inhibition, botulinum neurotoxin blocks the rearrangement of the presynaptic intramembrane particles induced by potassium stimulation. The action of botulinum neurotoxin suggests that the intramembrane particle rearrangement is related to the acetylcholine secretion induced by potassium stimulation in synaptosomes isolated from the electric organ of Torpedo marmorata.
Resumo:
Tässä tutkimuksessa tutkittiin tietämyksen hallintaa, tietopääomaa ja niiden ilmentymiä liiketoiminnassa. Tutkimuksen avulla pyrittiin selvittämään, pystytäänkö tutkimukseen valittujen mallien avulla määrittelemään S-ryhmään kuuluvan ABC-liikennemyymäläketjun liiketoiminnan kannalta oleellinen tietämyksen hallinta ja tietopääoma. Tutkimus toteutettiin case-tutkimuksena puolistrukturoiduilla teemahaastatteluilla. Haastatteluja tehtiin yhteensä 13 kappaletta. Analyysi, tulokset ja johtopäätökset perustuivat tutkimuksen tekijän omiin tulkintoihin, jotka perustuivat haastatteluista saatujen havaintojen vertailusta teoriaan ja muihin sivutietolähteisiin. Tutkimus osoitti, että tietämyksen hallinnan ja tietopääoman määrittely kyettiin tekemään, mutta lopputulos ei ollut lähtökohtamallin mukainen. Itse määrittelyprosessi ei ollut helppo toteuttaa, mikä johtui tietämyksen hallinnan ja tietopääoman eri osa-alueiden laajuudesta, päällekkäisyydestä, käsitteiden ja aihepiirin vieraudesta haastateltaville. Tutkimuksen oleellisin tulos oli se, että lähtökohtamalliin tehtiin muutoksia tietopääoman osa-alueelle: 1. aineettomaan varallisuuteen lisättiin ”organisaatio” ja poistettiin ”tekniset järjestelmät”, 2. organisaation osaamiseen lisättiin ”verkosto-osaaminen” ja 3. organisaation uudistumiskykyyn lisättiin ”operatiivinen kyvykkyys”. Keskeisin johtopäätös oli, että määritelläkseen liiketoiminnalle ominaisen tietämyksen hallinnan ja tietopääoman ilmentymät, tulee organisaation lähteä liikkeelle yhdestä mallista ja sopia yhteisistä käytettävistä käsitteistä. Organisaatiot ovat eri toimialoilta, joten kaikkia ilmentymiä ei välttämättä esiinny tai löytyy mallissa esiintymättömiä ilmentymiä. Tällöin tulee tehdä muutoksia lähtökohtakohtamalliin.
Resumo:
Lactate, a product of glycolysis, has been shown to play a key role in the metabolic support of neurons/axons in the CNS by both astrocytes and oligodendrocytes through monocarboxylate transporters (MCTs). Despite such importance in the CNS, little is known about MCT expression and lactate function in the PNS. Here we show that mouse MCT1, MCT2, and MCT4 are expressed in the PNS. While DRG neurons express MCT1, myelinating Schwann cells (SCs) coexpress MCT1 and MCT4 in a domain-specific fashion, mainly in regions of noncompact myelin. Interestingly, SC-specific downregulation of MCT1 expression in rat neuron/SC cocultures led to increased myelination, while its downregulation in neurons resulted in a decreased amount of neurofilament. Finally, pure rat SCs grown in the presence of lactate exhibited an increase in the level of expression of the main myelin regulator gene Krox20/Egr2 and the myelin gene P0. These data indicate that lactate homeostasis participates in the regulation of the SC myelination program and reveal that similar to CNS, PNS axon-glial metabolic interactions are most likely mediated by MCTs.
Resumo:
Osteoclasts are multinucleated bone degrading cells. Phosphate is an important constituent of mineralized bone and released in significant quantities during bone resorption. Molecular contributors to phosphate transport during the resorptive activity of osteoclasts have been controversially discussed. This study aimed at deciphering the role of sodium-dependent phosphate transporters during osteoclast differentiation and bone resorption. Our studies reveal RANKL-induced differential expression of sodium-dependent phosphate transport protein IIa (NaPi-IIa) transcript and protein during osteoclast development, but no expression of the closely related NaPi-IIb and NaPi-IIc SLC34 family isoforms. In vitro studies employing NaPi-IIa-deficient osteoclast precursors and mature osteoclasts reveal that NaPi-IIa is dispensable for bone resorption and osteoclast differentiation. These results are supported by the analysis of structural bone parameters by high-resolution microcomputed tomography that yielded no differences between adult NaPi-IIa WT and KO mice. By contrast, both type III sodium-dependent phosphate transporters Pit-1 and Pit-2 were abundantly expressed throughout osteoclast differentiation, indicating that they are the relevant sodium-dependent phosphate transporters in osteoclasts and osteoclast precursors. We conclude that phosphate transporters of the SLC34 family have no role in osteoclast differentiation and function and propose that Pit-dependent phosphate transport could be pivotal for bone resorption and should be addressed in further studies.