966 resultados para Training sets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trainers from the region contributed theory and practical training to trainees from government departments, universities and NGOs relevant to conservation of seagrasses and monitoring methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives of the workshop included; introduction to various Marine Protected Area (MPA) tools with a focus on Management Effectiveness Assessment Tool (MEAT); report on selected MPAs in Bangladesh; undertake initial assessments using MEAT; and develop workplans for other MPAs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives included a desk-top feasibility study to explore opportunities to adapt the Scientific Educational Resources and Experience Associated with the Deployment of Argo profiling floats in the South Pacific Ocean (SEREAD) to BOBLME country schools.The programme included teacher resources on climate change and facilitating interactions between scientists, students and teachers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents presentations from representatives of 12 countries, key outcomes and recommendations for the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents presentations from representatives of 12 countries, key outcomes and recommendations for the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trawling experiments carried out by the United Nations Development Programme Project and the Uganda Department of Fisheries, strongly suggest that the trawling method of fishing, if introduced on Lake Victoria, would bring about a tremendous increase in fish production from the lake. It is recognised, however, that before trawling is introduced, its economic, social, technical, biological and manpower implications must be carefully analysed. I now propose to discuss the training aspects of a trawl fishery on Lake Victoria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In standard Gaussian Process regression input locations are assumed to be noise free. We present a simple yet effective GP model for training on input points corrupted by i.i.d. Gaussian noise. To make computations tractable we use a local linear expansion about each input point. This allows the input noise to be recast as output noise proportional to the squared gradient of the GP posterior mean. The input noise variances are inferred from the data as extra hyperparameters. They are trained alongside other hyperparameters by the usual method of maximisation of the marginal likelihood. Training uses an iterative scheme, which alternates between optimising the hyperparameters and calculating the posterior gradient. Analytic predictive moments can then be found for Gaussian distributed test points. We compare our model to others over a range of different regression problems and show that it improves over current methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vector Taylor Series (VTS) model based compensation is a powerful approach for noise robust speech recognition. An important extension to this approach is VTS adaptive training (VAT), which allows canonical models to be estimated on diverse noise-degraded training data. These canonical model can be estimated using EM-based approaches, allowing simple extensions to discriminative VAT (DVAT). However to ensure a diagonal corrupted speech covariance matrix the Jacobian (loading matrix) relating the noise and clean speech is diagonalised. In this work an approach for yielding optimal diagonal loading matrices based on minimising the expected KL-divergence between the diagonal loading matrix and "correct" distributions is proposed. The performance of DVAT using the standard and optimal diagonalisation was evaluated on both in-car collected data and the Aurora4 task. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses innovations in curriculum development in the Department of Engineering at the University of Cambridge as a participant in the Teaching for Learning Network (TFLN), a teaching and learning development initiative funded by the Cambridge-MIT Institute a pedagogic collaboration and brokerage network. A year-long research and development project investigated the practical experiences through which students traditionally explore engineering disciplines, apply and extend the knowledge gained in lectures and other settings, and begin to develop their professional expertise. The research project evaluated current practice in these sessions and developed an evidence-base to identify requirements for new activities, student support and staff development. The evidence collected included a novel student 'practice-value' survey highlighting effective practice and areas of concern, classroom observation of practicals, semi-structured interviews with staff, a student focus group and informal discussions with staff. Analysis of the data identified three potentially 'high-leverage' strategies for improvement: development of a more integrated teaching framework, within which practical work could be contextualised in relation to other learning; a more transparent and integrated conceptual framework where theory and practice were more closely linked; development of practical work more reflective of the complex problems facing professional engineers. This paper sets out key elements of the evidence collected and the changes that have been informed by this evidence and analysis, leading to the creation of a suite of integrated practical sessions carefully linked to other course elements and reinforcing central concepts in engineering, accompanied by a training and support programme for teaching staff.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent trend in spoken dialogue research is the use of reinforcement learning to train dialogue systems in a simulated environment. Past researchers have shown that the types of errors that are simulated can have a significant effect on simulated dialogue performance. Since modern systems typically receive an N-best list of possible user utterances, it is important to be able to simulate a full N-best list of hypotheses. This paper presents a new method for simulating such errors based on logistic regression, as well as a new method for simulating the structure of N-best lists of semantics and their probabilities, based on the Dirichlet distribution. Off-line evaluations show that the new Dirichlet model results in a much closer match to the receiver operating characteristics (ROC) of the live data. Experiments also show that the logistic model gives confusions that are closer to the type of confusions observed in live situations. The hope is that these new error models will be able to improve the resulting performance of trained dialogue systems. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many transductive inference algorithms assume that distributions over training and test estimates should be related, e.g. by providing a large margin of separation on both sets. We use this idea to design a transduction algorithm which can be used without modification for classification, regression, and structured estimation. At its heart we exploit the fact that for a good learner the distributions over the outputs on training and test sets should match. This is a classical two-sample problem which can be solved efficiently in its most general form by using distance measures in Hilbert Space. It turns out that a number of existing heuristics can be viewed as special cases of our approach.