963 resultados para Temporal density


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transport of reactive solutes through fractured porous formations has been analyzed. The transport through the porous block is represented by a general multiprocess nonequilibrium equation (MPNE), which, for the fracture, is represented by an advection-dispersion equation with linear equilibrium sorption and first-order transformation. An implicit finite-difference technique has been used to solve the two coupled equations. The transport characteristics have been analyzed in terms of zeroth, first, and second temporal moments of the solute in the fracture. The solute behavior for fractured impermeable and fractured permeable formations are first compared and the effects of various fracture and matrix transport parameters are analyzed. Subsequently, the transport through a fractured permeable formation is analyzed to ascertain the effect of equilibrium sorption, rate-limited sorption, and the multiprocess nonequilibrium transport process. It was found that the temporal moments were nearly identical for the fractured impermeable and permeable formations when both the diffusion coefficient and the first-order transformation coefficient were relatively large. The multiprocess nonequilibrium model resulted in a smaller mass recovery in the fracture and higher dispersion than the equilibrium and rate-limited sorption models. DOI: 10.1061/(ASCE)HE.19435584.0000586. (C) 2012 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toplogical features of a sporadic trifurcated C-H center dot center dot center dot O interaction region, where an oxygen atom acts as an acceptor of three weak hydrogen bonds, has been investigated by experimental and theoretical charge density analysis of ferulic acid. The interaction energy of the asymmetric molecular dimer formed by the trifurcated C-H center dot center dot center dot O motif, based on the multipolar model, is shown to be greater than the corresponding asymmetric O-H center dot center dot center dot O dimer in this crystal structure. Further, the hydrogen bond energies associated with these interaction motifs have been estimated from the local kinetic and potential energy densities at the bond critical points. The trends suggest that the interaction energy of the trifurcated C-H center dot center dot center dot O region is comparable to that of a single O-H center dot center dot center dot O hydrogen bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiatively heated levitated functional droplets with nanosilica suspensions exhibit three distinct stages namely pure evaporation, agglomeration, and finally structure formation. The temporal history of the droplet surface temperature shows two inflection points. One inflection point corresponds to a local maximum and demarcates the end of transient heating of the droplet and domination of vaporization. The second inflection point is a local minimum and indicates slowing down of the evaporation rate due to surface accumulation of nanoparticles. Morphology and final precipitation structures of levitated droplets are due to competing mechanisms of particle agglomeration, evaporation, and shape deformation. In this work, we provide a detailed analysis for each process and propose two important timescales for evaporation and agglomeration that determine the final diameter of the structure formed. It is seen that both agglomeration and evaporation timescales are similar functions of acoustic amplitude (sound pressure level), droplet size, viscosity, and density. However, we show that while the agglomeration timescale decreases with initial particle concentration, the evaporation timescale shows the opposite trend. The final normalized diameter can be shown to be dependent solely on the ratio of agglomeration to evaporation timescales for all concentrations and acoustic amplitudes. The structures also exhibit various aspect ratios (bowls, rings, spheroids) which depend on the ratio of the deformation timescale (t(def)) and the agglomeration timescale (t(g)). For t(def) < t(g), a sharp peak in aspect ratio is seen at low concentrations of nanosilica which separates high aspect ratio structures like rings from the low aspect ratio structures like bowls and spheroids. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4775791]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypyrrole (PPy) has been synthesized electrochemically on platinum substrate by varying synthesis temperature and dopant concentration. The charge transport in PPy has been investigated as a function of temperature for both in-plane and out-of-plane geometry in a wide temperature range of 5K-300 K. The charge transport showed strong anisotropy and various mechanisms were used to explain the transport. The conductivity ratio, sigma(r) = sigma(300 K)/sigma(5 K) is calculated for each sample to quantify the relative disorder. At all the temperatures, the conductivity values for in-plane transport are found to be more for PPy synthesized at lower temperature, while the behavior is found to be different for out-of-plane transport. The carrier density is found to play a crucial role in case of in-plane transport. An effort has been made to correlate charge transport to morphology by analyzing temperature and frequency dependence of conductivity. Charge transport in lateral direction is found to be dominated by hopping whereas tunneling mechanisms are dominated in vertical direction. Parameters such as density of states at the Fermi level N(E-F)], average hopping distance (R), and average hopping energy (W) have been estimated for each samples in both geometry. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4775405]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Hooghly River estuary provides a unique experimental site to understand the effect of monsoonal river discharge on freshwater and seawater mixing. Water samples collected bi-weekly for a duration of 17 months were analyzed for salinity, delta O-18,delta C-13(DIC), as well as delta D to investigate the differential mixing of freshwater and seawater. The differences in salinity and delta O-18 of samples collected during low and high tides on the same day are strongly correlated suggesting a well mixed water column at our sampling site. Low salinity and depleted delta O-18 during monsoon is consistent with increased river discharge as well as high rainfall. We identified different slopes in a delta O-18 versus salinity plot for the estuary water samples collected during monsoon and non-monsoon seasons. This is driven by composition of the freshwater source which is dominated by rainwater during monsoon and rivers during non-monsoon months. Selected delta D analyses of samples indicate that groundwater contributes significantly to the Hooghly Estuary during low rainfall times of the year. delta C-13(DIC) measured in the water recorded low values towards the end of monsoon indicating low productivity (i.e. increased organic respiration) while progressively increasing delta C-13(DIC) values from October till January as well as during some of the pre-monsoon months can be explained by increasing productivity. Very low delta C-13(DIC) (similar to-20%0) suggests involvement of carbon derived from anaerobic oxidation of organics and/or methane with potential contribution from increased anthropogenic water supply. An estimate of seawater incursion into the Hooghly Estuary at different times of the year is obtained by using salinity data in a two-component mixing model. Presence of seawater was found maximum (31-37%) during February till July and lowest (less than or equal to 6%) from September till November. We notice a temporal offset between Ganges River discharge farther upstream at Farakka and salinity variation at the Hooghly Estuary. We believe that this time lag is a result of the physical distance between Farakka and Kakdweep (our sampling location) and put constraints on the travel time of river water during early monsoon. (c) 2012 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solution of the forward equation that models the transport of light through a highly scattering tissue material in diffuse optical tomography (DOT) using the finite element method gives flux density (Phi) at the nodal points of the mesh. The experimentally measured flux (U-measured) on the boundary over a finite surface area in a DOT system has to be corrected to account for the system transfer functions (R) of various building blocks of the measurement system. We present two methods to compensate for the perturbations caused by R and estimate true flux density (Phi) from U-measured(cal). In the first approach, the measurement data with a homogeneous phantom (U-measured(homo)) is used to calibrate the measurement system. The second scheme estimates the homogeneous phantom measurement using only the measurement from a heterogeneous phantom, thereby eliminating the necessity of a homogeneous phantom. This is done by statistically averaging the data (U-measured(hetero)) and redistributing it to the corresponding detector positions. The experiments carried out on tissue mimicking phantom with single and multiple inhomogeneities, human hand, and a pork tissue phantom demonstrate the robustness of the approach. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) DOI: 10.1117/1.JBO.18.2.026023]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gross characteristics of spatio-temporal current evolution in the return stroke phase of a cloud-to-ground lightning are rather well defined. However, they by themselves do not ensure the salient features for the resulting remote Electro- Magnetic Fields (EMFs). In spite of significant efforts in the engineering models wherein, the spatio-temporal current distribution all along the channel is specified by the design, all the salient features of remote EMFs could not be achieved. Only the current evolution that ensures the basic characteristics along with its ability to reproduce all the salient features of remote EMFs ranging from 50 m – 200 km from the lightning channel, can be considered as a realistic return stroke channel current. In view of this, the present work intends to investigate on the required fine features of the return stroke current evolution that yields all the desired features. To ensure that the current evolution is not arbitrary but obeys the involved basic physical processes, a recently developed physical model will be employed for the analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional theory (DFT) calculations are being performed to investigate the geometric, vibrational, and electronic properties of the chlorogenic acid isomer 3-CQA (1R,3R,4S,5R)-3-{(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,4, 5-trihydroxycyclohexanecarboxylic acid), a major phenolic compound in coffee. DFT calculations with the 6-311G(d,p) basis set produce very good results. The electrostatic potential mapped onto an isodensity surface has been obtained. A natural bond orbital analysis (NBO) has been performed in order to study intramolecular bonding, interactions among bonds, and delocalization of unpaired electrons. HOMO-LUMO studies give insights into the interaction of the molecule with other species. The calculated HOMO and LUMO energies indicate that a charge transfer occurs within the molecule. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key points center dot Active calcium signal propagation occurs when an initial calcium trigger elicits calcium release through endoplasmic reticulum (ER) receptors. A high concentration of the calcium trigger in thin-calibre dendrites would suppress release of calcium through hippocampal inositol trisphosphate receptors (InsP3Rs). center dot Could the high-density expression of A-type K+ channels in thin-calibre dendrites be a mechanism for inhibiting this suppression, thereby restoring the utility of the ER as a substrate for active calcium propagation? center dot Quantitative analyses involving experimentally constrained models reveal a bell-shaped dependence of calcium released through InsP3Rs on the A-type K+ channel density, during the propagation of a calcium wave. center dot A-type K+ channels regulated the relative contribution of ER calcium to the induction of synaptic plasticity in the presence of model metabotropic glutamate receptors. center dot These results identify a novel form of interaction between active dendrites and the ER membrane and suggest that A-type K+ channels are ideally placed for inhibiting the suppression of InsP3Rs in thin-calibre dendrites. Abstract The A-type potassium current has been implicated in the regulation of several physiological processes. Here, we explore a role for the A-type potassium current in regulating the release of calcium through inositol trisphosphate receptors (InsP3R) that reside on the endoplasmic reticulum (ER) of hippocampal pyramidal neurons. To do this, we constructed morphologically realistic, conductance-based models equipped with kinetic schemes that govern several calcium signalling modules and pathways, and constrained the distributions and properties of constitutive components by experimental measurements from these neurons. Employing these models, we establish a bell-shaped dependence of calcium release through InsP3Rs on the density ofA-type potassium channels, during the propagation of an intraneuronal calcium wave initiated through established protocols. Exploring the sensitivities of calcium wave initiation and propagation to several underlying parameters, we found that ER calcium release critically depends on dendritic diameter and that wave initiation occurred at branch points as a consequence of a high surface area to volume ratio of oblique dendrites. Furthermore, analogous to the role ofA-type potassium channels in regulating spike latency, we found that an increase in the density ofA-type potassium channels led to increases in the latency and the temporal spread of a propagating calcium wave. Next, we incorporated kinetic models for the metabotropic glutamate receptor (mGluR) signalling components and a calcium-controlled plasticity rule into our model and demonstrate thatthe presence of mGluRs induced a leftward shift in a BienenstockCooperMunro-like synaptic plasticity profile. Finally, we show that the A-type potassium current could regulate the relative contribution of ER calcium to synaptic plasticity induced either through 900 pulses of various stimulus frequencies or through theta burst stimulation. Our results establish a novel form of interaction between active dendrites and the ER membrane, uncovering a powerful mechanism that could regulate biophysical/biochemical signal integration and steer the spatiotemporal spread of signalling microdomains through changes in dendritic excitability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report ultrafast quasiparticle (QP) dynamics and coherent acoustic phonons in undoped CaFe2As2 iron pnictide single crystals exhibiting spin-density wave (SDW) and concurrent structural phase transition at temperature T-SDW similar to 165K using femtosecond time-resolved pump-probe spectroscopy. The contributions in transient differential reflectivity arising from exponentially decaying QP relaxation and oscillatory coherent acoustic phonon mode show large variations in the vicinity of T-SDW. From the temperature-dependence of the QP recombination dynamics in the SDW phase, we evaluate a BCS-like temperature dependent charge gap with its zero-temperature value of similar to(1.6 perpendicular to 0.2)k(B)T(SDW), whereas, much above T-SDW, an electron-phonon coupling constant of similar to 0.13 has been estimated from the linear temperature-dependence of the QP relaxation time. The long-wavelength coherent acoustic phonons with typical time-period of similar to 100 ps have been analyzed in the light of propagating strain pulse model providing important results for the optical constants, sounds velocity and the elastic modulus of the crystal in the whole temperature range of 3 to 300 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that extremely long low-density parity-check (LDPC) codes perform exceptionally well for error correction applications, short-length codes are preferable in practical applications. However, short-length LDPC codes suffer from performance degradation owing to graph-based impairments such as short cycles, trapping sets and stopping sets and so on in the bipartite graph of the LDPC matrix. In particular, performance degradation at moderate to high E-b/N-0 is caused by the oscillations in bit node a posteriori probabilities induced by short cycles and trapping sets in bipartite graphs. In this study, a computationally efficient algorithm is proposed to improve the performance of short-length LDPC codes at moderate to high E-b/N-0. This algorithm makes use of the information generated by the belief propagation (BP) algorithm in previous iterations before a decoding failure occurs. Using this information, a reliability-based estimation is performed on each bit node to supplement the BP algorithm. The proposed algorithm gives an appreciable coding gain as compared with BP decoding for LDPC codes of a code rate equal to or less than 1/2 rate coding. The coding gains are modest to significant in the case of optimised (for bipartite graph conditioning) regular LDPC codes, whereas the coding gains are huge in the case of unoptimised codes. Hence, this algorithm is useful for relaxing some stringent constraints on the graphical structure of the LDPC code and for developing hardware-friendly designs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential merit of laser-induced breakdown spectroscopy (LIBS) has been demonstrated for detection and quantification of trace pollutants trapped in snow/ice samples. In this technique, a high-power pulsed laser beam from Nd:YAG Laser (Model no. Surelite III-10, Continuum, Santa Clara, CA, USA) is focused on the surface of the target to generate plasma. The characteristic emissions from laser-generated plasma are collected and recorded by a fiber-coupled LIBS 2000+ (Ocean Optics, Santa Clara, CA, USA) spectrometer. The fingerprint of the constituents present in the sample is obtained by analyzing the spectral lines by using OOI LIBS software. Reliable detection of several elements like Zn, Al, Mg, Fe, Ca, C, N, H, and O in snow/ice samples collected from different locations (elevation) of Manali and several snow samples collected from the Greater Himalayan region (from a cold lab in Manali, India) in different months has been demonstrated. The calibration curve approach has been adopted for the quantitative analysis of these elements like Zn, Al, Fe, and Mg. Our results clearly demonstrate that the level of contamination is higher in those samples that were collected in the month of January in comparison to those collected in February and March.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable estimates of species density are fundamental to planning conservation strategies for any species; further, it is equally crucial to identify the most appropriate technique to estimate animal density. Nocturnal, small-sized animal species are notoriously difficult to census accurately and this issue critically affects their conservation status, We carried out a field study in southern India to estimate the density of slender loris, a small-sized nocturnal primate using line and strip transects. Actual counts of study individuals yielded a density estimate of 1.61 ha(-1); density estimate from line transects was 1.08 ha(-1); and density estimates varied from 1.06 ha(-1) to 0.59 ha(-1) in different fixed-width strip transects. We conclude that line and strip transects may typically underestimate densities of cryptic, nocturnal primates.