Flux density calibration in diffuse optical tomographic systems


Autoria(s): Biswas, Samir Kumar; Rajan, Kanhirodan; Vasu, Ram M
Data(s)

2013

Resumo

The solution of the forward equation that models the transport of light through a highly scattering tissue material in diffuse optical tomography (DOT) using the finite element method gives flux density (Phi) at the nodal points of the mesh. The experimentally measured flux (U-measured) on the boundary over a finite surface area in a DOT system has to be corrected to account for the system transfer functions (R) of various building blocks of the measurement system. We present two methods to compensate for the perturbations caused by R and estimate true flux density (Phi) from U-measured(cal). In the first approach, the measurement data with a homogeneous phantom (U-measured(homo)) is used to calibrate the measurement system. The second scheme estimates the homogeneous phantom measurement using only the measurement from a heterogeneous phantom, thereby eliminating the necessity of a homogeneous phantom. This is done by statistically averaging the data (U-measured(hetero)) and redistributing it to the corresponding detector positions. The experiments carried out on tissue mimicking phantom with single and multiple inhomogeneities, human hand, and a pork tissue phantom demonstrate the robustness of the approach. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) DOI: 10.1117/1.JBO.18.2.026023]

Formato

application/pdf

Identificador

http://eprints.iisc.ernet.in/46075/1/Jol_Bio_Opt_18-2_026023_2013.pdf

Biswas, Samir Kumar and Rajan, Kanhirodan and Vasu, Ram M (2013) Flux density calibration in diffuse optical tomographic systems. In: JOURNAL OF BIOMEDICAL OPTICS, 18 (2).

Publicador

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS

Relação

http://dx.doi.org/10.1117/1.JBO.18.2.026023

http://eprints.iisc.ernet.in/46075/

Palavras-Chave #Instrumentation and Applied Physics (Formally ISU) #Physics
Tipo

Journal Article

PeerReviewed