986 resultados para Tectonics, Structural geology
Resumo:
Encoding protein 3D structures into 1D string using short structural prototypes or structural alphabets opens a new front for structure comparison and analysis. Using the well-documented 16 motifs of Protein Blocks (PBs) as structural alphabet, we have developed a methodology to compare protein structures that are encoded as sequences of PBs by aligning them using dynamic programming which uses a substitution matrix for PBs. This methodology is implemented in the applications available in Protein Block Expert (PBE) server. PBE addresses common issues in the field of protein structure analysis such as comparison of proteins structures and identification of protein structures in structural databanks that resemble a given structure. PBE-T provides facility to transform any PDB file into sequences of PBs. PBE-ALIGNc performs comparison of two protein structures based on the alignment of their corresponding PB sequences. PBE-ALIGNm is a facility for mining SCOP database for similar structures based on the alignment of PBs. Besides, PBE provides an interface to a database (PBE-SAdb) of preprocessed PB sequences from SCOP culled at 95% and of all-against-all pairwise PB alignments at family and superfamily levels. PBE server is freely available at http://bioinformatics.univ-reunion.fr/ PBE/.
Resumo:
The crystal structures of five model peptides Piv-Pro-Gly-NHMe (1), Piv-Pro-beta Gly-NHMe (2), Piv-Pro-beta Gly-OMe (3), Piv-Pro-delta Ava-OMe (4) and Boc-Pro-gamma Abu-OH (5) are described (Piv:pivaloyl; NHMe: N-methylamide; beta Gly:beta-glycine; OMe:O-methyl ester; delta Ava:delta-aminovaleric acid; gamma Abu:gamma-aminobutyric acid). A comparison of the structures of peptides 1 and 2 illustrates the dramatic consequences upon backbone homologation in short sequences. 1 adopts a type II beta-turn conformation in the solid state, while in 2, the molecule adopts an open conformation with the beta-residue being fully extended. Piv-Pro-beta Gly-OMe (3), which differs from 2 by replacement of the C-terminal NH group by an O-atom, adopts an almost identical molecular conformation and packing arrangement in the solid state. In peptide 4, the observed conformation resembles that determined for 2 and 3, with the delta Ava residue being fully extended. In peptide 5, the molecule undergoes a chain reversal, revealing a beta-turn mimetic structure stabilized by a C-H center dot center dot center dot O hydrogen bond.
Resumo:
The hydrophobic effect is widely believed to be an important determinant of protein stability. However, it is difficult to obtain unambiguous experimental estimates of the contribution of the hydrophobic driving force to the overall free energy of folding. Thermodynamic and structural studies of large to small substitutions in proteins are the most direct method of measuring this contribution. We have substituted the buried residue Phe8 in RNase S with alanine, methionine, and norleucine, Binding thermodynamics and structures were characterized by titration calorimetry and crystallography, respectively. The crystal structures of the RNase S F8A, F8M, and F8Nle mutants indicate that the protein tolerates the changes without any main chain adjustments, The correlation of structural and thermodynamic parameters associated with large to small substitutions was analyzed for nine mutants of RNase S as well as 32 additional cavity-containing mutants of T4 lysozyme, human lysozyme, and barnase. Such substitutions were typically found to result in negligible changes in Delta C-p and positive values of both Delta Delta H degrees and aas of folding. Enthalpic effects were dominant, and the sign of Delta Delta S is the opposite of that expected from the hydrophobic effect. Values of Delta Delta G degrees and Delta Delta H degrees correlated better with changes in packing parameters such as residue depth or occluded surface than with the change in accessible surface area upon folding. These results suggest that the loss of packing interactions rather than the hydrophobic effect is a dominant contributor to the observed energetics for large to small substitutions. Hence, estimates of the magnitude of the hydrophobic driving force derived from earlier mutational studies are likely to be significantly in excess of the actual value.
Resumo:
The asymmetric stress strain behavior under tension/compression in an initial < 100 > B-2-NiAl nanowire is investigated considering two different surface configurations i.e., < 100 >/(0 1 0) (0 0 1) and < 100 >/(0 1 1) (0 - 1 1). This behavior is attributed to two different deformation mechanisms namely a slip dominated deformation under compression and a known twinning dominated deformation under tension. It is also shown that B2 -> BCT (body-centered-tetragonal) phase transformation under tensile loading is independent of the surface configurations for an initial < 100 > oriented NiAl nanowire. Under tensile loading, the nanowire undergoes a stress-induced martensiticphase transformation from an initial B2 phase to BCT phase via twinning along {110} plane with failure strain of similar to 0.30. On the other hand, a compressive loading causes failure of these nanowires via brittle fracture after compressive yielding, with a maximum failure strain of similar to-0.12. Such brittle fracture under compressive loading occurs via slip along {110} plane without any phase transformations. Softening/hardening behavior is also reported for the first time in these nanowires under tensile/compressive loadings, which cause asymmetry in their yield strength behavior in the stress strain space. Result shows that a sharp increase in energy with increasing strain under compressive loading causes hardening of the nanowire, and hence, gives improved yield strength as compared to tensile loading. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The extremities of chromosomes end in a G-rich single-stranded overhang that has been implicated in the onset of the replicate senescence. The repeated sequence forming a G-overhang is able to adopt a four-stranded DNA structure called G-quadruplex, which is a poor substrate for the enzyme telomerase. Small molecule based ligands that selectively stabilize the telomeric G-quadruplex DNA, induce telomere shortening eventually leading to cell death. Herein, we have investigated the G-quadruplex DNA interaction with two isomeric bisbenzimidazole-based compounds that differ in terms of shape (V-shaped angular vs linear).While the linear isomer induced some stabilization of the intramolecular G-quadruplex structure generated in the presence of Na+ the other, having V-shaped central planar core, caused a dramatic structural alteration of the latter, above a threshold concentration. This transition was evident from the pronounced changes observed in the circular dichroism spectra and from the get mobility shift assa involving the G-quadruples DNA. Notably, this angular isomer could also induce the G-quadruplex formation in the absence of any added cation. The ligand-quadruples complexes were investigated by computational molecular modeling, providing further information on structure-activity relationships. Finally, TRAP (telomerase repeat amplification protocol) experiments demonstrated that the angular isomer is selective toward the inhibition of telomerase activity.
Resumo:
The existence of an icosahedral phase in Mg−Al−Ag is better understood on a crystallographic basis rather than on a quantum structural diagram basis. The quasicrystalline structure is delineated in terms of quasiperiodic arrangement of Pauling triacontahedra, which can be identified in the equilibrium structure. Subtle differences in the electron diffraction patterns have been recorded compared to the ideal quasicrystalline pattern. The misalignment of spots and distortions are better attributed to higher order rational approximate structure than anisotropic phason strain. Ares of diffuse intensity have been related to the ordering among the atoms in the clusters.
Resumo:
Oxides of the families Ba3ZnTa2-xNbxO9 and Ba3MgTa2-xNbxO9 were obtained by the solid state reaction route at 1573 K and were found to crystallize in the disordered (cubic) perovskite structure. In Ba3ZnTa2-xNbXO9 and Ba3MgTa2-xNbxO9 the entire range (0 less than or equal to x less than or equal to 1) of solid solutions could be synthesized. The dielectric constant decreases with increase in frequency for all compositions in the range 40 Hz to 100 kHz (epsilon (r) varies from 16 to 22). The dielectric loss (D) shows a broad maximum for both Ba3ZnTa2-xNbxO9 and Ba3MgTa2-xNbxO9. The maxima is centered around 2 kHz in the former and near 10 kHz in the latter. (C) 2001 Elsevier Science Ltd. All sights reserved.
Resumo:
Preferential cleavage of active genes by DNase I has been correlated with a structurally altered conformation of DNA at the hypersensitive site in chromatin. To have a better understanding of the structural requirements for gene activation as probed by DNase I action, digestability by DNase I of synthetic polynucleotides having the ability to adopt B and non-B conformation (like Z-form) was studied which indicated a marked higher digestability of the B-form of DNA. Left handed Z form present within a natural sequence in supercoiled plasmid also showed marked resistance towards DNase I digestion. We show that alternating purine-pyrimidine sequences adopting Z-conformation exhibit DNAse I foot printing even in a protein free system. The logical deductions from the results indicate that 1) altered structure like Z-DNA is not a favourable substrate for DNase I, 2) both the ends of the alternating purine-pyrimidine insert showed hypersensitivity, 3) B-form with a minor groove of 12-13 A is a more favourable substrate for DNase I than an altered structure, 4) any structure of DNA deviating largely from B form with a capacity to flip over to the B-form are potential targets for the DNase I enzymic probes in naked DNA.
Resumo:
High-temperature superconductivity constitutes the most sensational discovery of recent times. Since these new superconductors are complex metal oxides, chemistry has had a big role to play in the investigations. For the first time, stoichiometry, structure, bonding, and such chemical factors have formed central themes in superconductivity, an area traditionally dominated by physicists. These oxide superconductors have given a big boost to solid-state chemistry.
Resumo:
The role of spermine in inducing A-DNA conformation in deoxyoligonucleotides has been studied using CCGG and GGCC as model sequences. It has been found that while CCGG adopts an alternating B-DNA conformation in low salt solution at low temperature, addition of spermine to this medium induces a B --greater than A transition. In contrast, the A-DNA-like structure of GGCC in low salt solution at low temperature does not change under the influence of spermine. This suggests a sequence-dependent behaviour of spermine. Further these results suggest that the A-DNA conformation observed in the crystals of d(iCCGG) and d(GGCC)2 might have been due to the presence of spermine in the crystallization cocktail.
Resumo:
The special magnetotransport properties of hole doped manganese perovskites originate from a complex interplay among structural, magnetic and electronic degree of freedom. In this picture the local atomic structure around Mn ions plays a special role and this is the reason why short range order techniques like X-ray absorption spectroscopy (XAS) have been deeply exploited for studying these compounds. The analysis of near edge region features (XANES) of XAS spectra can provide very fine details of the local structure around Mn, complementary to the EXAFS, so contributing to the full understanding of the peculiar physical properties of these materials. Nevertheless the XANES analysis is complicated by the large amount of structural and electronic details involved making difficult the quantitative interpretation.This work exploits the recently developed MXAN code to achieve a full structural refinement of the Mn K edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3, in which the Mn ions are present only in one charge state as Mn3+ and Mn4+ respectively. The good agreement between the results derived from the analysis of near edge and extended region of the XAS spectra demonstrates that a quantitative picture of the local structure call be obtained from structural refinement of Mn K edge XANES data in these crystalline compounds. The XANES analysis offers, in addition.. the possibility to directly achieve information on the topology of local atomic structure around the absorber not directly achievable from EXAFS.
Resumo:
We have synthesized the solid solution Sr2Fe1+xMo1-xO6 with -1 <= x <= 0.25, the composition x=0 corresponding to the well-known double-perovskite system Sr2FeMoO6. We report structural and magnetic properties of the above system, exhibiting systematic variations across the series. These results restrict the range of models that can explain magnetism in this family of compounds, providing an understanding of the magnetic structure.
Resumo:
The title compound, dirubidium tricadmium tris(sulfate) dihydroxide dihydrate, consists of sheets of CdO6 octahedra and sulfate tetrahedra propagating in the (100) plane, with Rb+ ions in the interlayer positions. It is isostructural with K2Co3(SO4)(3)(OH)(2)(.)2H(2)O.
Resumo:
The Hodgkin and Huxley (HH) model of action potential has become a central paradigm of neuroscience. Despite its ability to predict action potentials with remarkable accuracy, it fails to explain several biophysical findings related to the initiation and propagation of the nerve impulse. The isentropic heat release and optical phenomena demonstrated by various experiments suggest that action potential is accompanied by a transient phase change in the axonal membrane. In this study a method was developed for preparing a giant axon from the crayfish abdominal cord for studying the molecular mechanisms of action potential simultaneously by electrophysiological and optical methods. Also an alternative setup using a single-cell culture of an Aplysia sensory neuron is presented. In addition to the description of the method, the preliminary results on the effect of phloretin, a dipole potential lowering compound, on the excitability of a crayfish giant axon are presented.