5 resultados para Tectonics, Structural geology

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An area of about 25 square miles in the western part of the San Gabriel Mountains was mapped on a scale of 1000 feet to the inch. Special attention was given to the structural geology, particularly the relations between the different systems of faults, of which the San Gabriel fault system and the Sierra Madre fault system are the most important ones. The present distribution and relations of the rocks suggests that the southern block has tilted northward against a more stable mass of old rocks which was raised up during a Pliocene or post-Pliocene orogeny. It is suggested that this northward tilting of the block resulted in the group of thrust faults which comprise the Sierra Madre fault system. It is show that this hypothesis fits the present distribution of the rocks and occupies a logical place in the geologic history of the region as well or better than any other hypothesis previously offered to explain the geology of the region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis describes the active structures of Myanmar and its surrounding regions, and the earthquake geology of the major active structures. Such investigation is needed urgently for this rapidly developing country that has suffered from destructive earthquakes in its long history. To archive a better understanding of the regional active tectonics and the seismic potential in the future, we utilized a global digital elevation model and optical satellite imagery to describe geomorphologic evidence for the principal neotectonic features of the western half of the Southeast Asia mainland. Our investigation shows three distinct active structural systems that accommodate the oblique convergence between the Indian plate and Southeast Asia and the extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Each of these active deformation belts can be further separated into several neotectonic domains, in which structures show distinctive active behaviors from one to another.

In order to better understand the behaviors of active structures, we focused on the active characteristics of the right-lateral Sagaing fault and the oblique subducting northern Sunda megathrust in the second part of this thesis. The detailed geomorphic investigations along these two major plate-interface faults revealed the recent slip behavior of these structures, and plausible recurrence intervals of major seismic events. We also documented the ground deformation of the 2011 Tarlay earthquake in remote eastern Myanmar from remote sensing datasets and post-earthquake field investigations. The field observation and the remote sensing measurements of surface ruptures of the Tarlay earthquake are the first study of this kind in the Myanmar region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The geology and structure of two crustal scale shear zones were studied to understand the partitioning of strain within intracontinental orogenic belts. Movement histories and regional tectonic implications are deduced from observational data. The two widely separated study areas bear the imprint of intense Late Mesozoic through Middle Cenozoic tectonic activity. A regional transition from Late Cretaceous-Early Tertiary plutonism, metamorphism, and shortening strain to Middle Tertiary extension and magmatism is preserved in each area, with contrasting environments and mechanisms. Compressional phases of this tectonic history are better displayed in the Rand Mountains, whereas younger extensional structures dominate rock fabrics in the Magdalena area.

In the northwestern Mojave desert, the Rand Thrust Complex reveals a stack of four distinctive tectonic plates offset along the Garlock Fault. The lowermost plate, Rand Schist, is composed of greenschist facies metagraywacke, metachert, and metabasalt. Rand Schist is structurally overlain by Johannesburg Gneiss (= garnet-amphibolite grade orthogneisses, marbles and quartzites), which in turn is overlain by a Late Cretaceous hornblende-biotite granodiorite. Biotite granite forms the fourth and highest plate. Initial assembly of the tectonic stack involved a Late Cretaceous? south or southwest vergent overthrusting event in which Johannesburg Gneiss was imbricated and attenuated between Rand Schist and hornblende-biotite granodiorite. Thrusting postdated metamorphism and deformation of the lower two plates in separate environments. A post-kinematic stock, the Late Cretaceous Randsburg Granodiorite, intrudes deep levels of the complex and contains xenoliths of both Rand Schist and mylonitized Johannesburg? gneiss. Minimum shortening implied by the map patterns is 20 kilometers.

Some low angle faults of the Rand Thrust Complex formed or were reactivated between Late Cretaceous and Early Miocene time. South-southwest directed mylonites derived from Johannesburg Gneiss are commonly overprinted by less penetrative north-northeast vergent structures. Available kinematic information at shallower structural levels indicates that late disturbance(s) culminated in northward transport of the uppermost plate. Persistence of brittle fabrics along certain structural horizons suggests a possible association of late movement(s) with regionally known detachment faults. The four plates were juxtaposed and significant intraplate movements had ceased prior to Early Miocene emplacement of rhyolite porphyry dikes.

In the Magdalena region of north central Sonora, components of a pre-Middle Cretaceous stratigraphy are used as strain markers in tracking the evolution of a long lived orogenic belt. Important elements of the tectonic history include: (1) Compression during the Late Cretaceous and Early Tertiary, accompanied by plutonism, metamorphism, and ductile strain at depth, and thrust driven? syntectonic sedimentation at the surface. (2) Middle Tertiary transition to crustal extension, initially recorded by intrusion of leucogranites, inflation of the previously shortened middle and upper crustal section, and surface volcanism. (3) Gravity induced development of a normal sense ductile shear zone at mid crustal levels, with eventual detachment and southwestward displacement of the upper crustal stratigraphy by Early Miocene time.

Elucidation of the metamorphic core complex evolution just described was facilitated by fortuitous preservation of a unique assemblage of rocks and structures. The "type" stratigraphy utilized for regional correlation and strain analysis includes a Jurassic volcanic arc assemblage overlain by an Upper Jurassic-Lower Cretaceous quartz pebble conglomerate, in turn overlain by marine strata with fossiliferous Aptian-Albian limestones. The Jurassic strata, comprised of (a) rhyolite porphyries interstratified with quartz arenites, (b) rhyolite cobble conglomerate, and (c) intrusive granite porphyries, are known to rest on Precambrian basement north and east of the study area. The quartz pebble conglomerate is correlated with the Glance Conglomerate of southeastern Arizona and northeastern Sonora. The marine sequence represents part of an isolated arm? of the Bisbee Basin.

Crosscutting structural relationships between the pre-Middle Cretaceous supracrustal section, younger plutons, and deformational fabrics allow the tectonic sequence to be determined. Earliest phases of a Late Cretaceous-Early Tertiary orogeny are marked by emplacement of the 78 ± 3 Ma Guacomea Granodiorite (U/Pb zircon, Anderson et al., 1980) as a sill into deep levels of the layered Jurassic series. Subsequent regional metamorphism and ductile strain is recorded by a penetrative schistosity and lineation, and east-west trending folds. These fabrics are intruded by post-kinematic Early Tertiary? two mica granites. At shallower crustal levels, the orogeny is represented by north directed thrust faulting, formation of a large intermontane basin, and development of a pronounced unconformity. A second important phase of ductile strain followed Middle Tertiary? emplacement of leucogranites as sills and northwest trending dikes into intermediate levels of the deformed section (surficial volcanism was also active during this transitional period to regional extension). Gravitational instabilities resulting from crustal swelling via intrusion and thermal expansion led to development of a ductile shear zone within the stratigraphic horizon occupied by a laterally extensive leucogranite sill. With continued extension, upper crustal brittle normal faults (detachment faults) enhanced the uplift and tectonic denudation of this mylonite zone, ultimately resulting in southwestward displacement of the upper crustal stratigraphy.

Strains associated with the two ductile deformation events have been successfully partitioned through a multifaceted analysis. R_f/Ø measurements on various markers from the "type" stratigraphy allow a gradient representing cumulative strain since Middle Cretaceous time to be determined. From this gradient, noncoaxial strains accrued since emplacement of the leucogranites may be removed. Irrotational components of the postleucogranite strain are measured from quartz grain shapes in deformed granites; rotational components (shear strains) are determined from S-C fabrics and from restoration of rotated dike and vein networks. Structural observations and strain data are compatable with a deformation path of: (1) coaxial strain (pure shear?), followed by (2) injection of leucogranites as dikes (perpendicular to the minimum principle stress) and sills (parallel to the minimum principle stress), then (3) southwest directed simple shear. Modeling the late strain gradient as a simple shear zone permits a minimum displacement of 10 kilometers on the Magdalena mylonite zone/detachment fault system. Removal of the Middle Tertiary noncoaxial strains yields a residual (or pre-existing) strain gradient representative of the Late Cretaceous-Early Tertiary deformation. Several partially destrained cross sections, restored to the time of leucogranite emplacement, illustrate the idea that the upper plate of the core complex bas been detached from a region of significant topographic relief. 50% to 100% bulk extension across a 50 kilometer wide corridor is demonstrated.

Late Cenozoic tectonics of the Magdalena region are dominated by Basin and Range style faulting. Northeast and north-northwest trending high angle normal faults have interacted to extend the crust in an east-west direction. Net extension for this period is minor (10% to 15%) in comparison to the Middle Tertiary detachment related extensional episode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pacoima area is located on an isolated hill in the northeast section of the San Fernando, the northeast portion of the Pacoima Quadrangle, Los Angeles County, California. Within it are exposed more than 2300 feet of Tertiary rocks, which comprise three units of Middle Miocene (?) age, and approximately 950 feet of Jurassic (?) granite basement. The formations are characterized by their mode of occurrence, marine and terrestial origin, diverse lithology, and structural features.

The basement complex is composed of intrusive granite, small masses of granodiorite and a granodiorite gneiss with the development of schistosity in sections. During the long period of erosion of the metamorphics, the granitic rocks were exposed and may have provided clastic constituents for the overlying formations.

As a result of rapid sedimentation in a transitional environment, the Middle Miocene Twin Peaks formation was laid down unconformably on the granite. This formation is essentially a large thinning bed of gray to buff pebble and cobble conglomerate grading to coarse yellow sandstone. The contact of conglomerate and granite is characterized by its faulted and depositional nature.

Beds of extrusive andesite, basalt porphyry, compact vesicular amygdaloidal basalts, andesite breccia, interbedded feldspathic sands and clays of terrestial origin, and mudflow breccia comprise the Pacoima formation which overlies the Twin Peaks formation unconformably. A transgressing shallow sea accompanied settling of the region and initiated deposition of fine clastic sediments.

The marine Topanga (?) formation is composed of brown to gray coarse sandstone grading into interbedded buff sandstones and gray shales. Intrusions of rhyolitedacite and ash beds mark continued but sporatic volcanism during this period.

The area mapped represents an arch in the Tertiary sediments. Forces that produced the uplift of the granite structural high created stresses that were relieved by jointing and faulting. Vertical and horizontal movement along these faults has displaced beds, offset contacts and complicated their structure. Uplift and erosion have exposed the present sequence of beds which dip gently to the northeast. The isolated hill is believed to be in an early stage of maturity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pacoima Hills lie between Foothill Boulevard and the San Fernando Road, three miles southeast of San Fernando, California. In this area are exposed Jurassic(?) granodiorite intruded in older gneiss, and a mid Miocene Topango (?) sedimentary section lying in both fault and sedimentary contact with the intrusive complex. Two distinct lava flows and a small laccolith of andesite occur within the Topango (?) formation. The principal structural feature is an anticline plunging steeply northward. An upward acting force is postulated to have produced this anticline; upon cessation of the force, normal faulting occurred with consequent down-dropping of north-south blocks.