968 resultados para TIGHT-JUNCTION STRANDS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy management is the process of monitoring, controlling and conserving energy in a building or organisation. The main reasons for this are for cost purposes and benefit to the environment. Through various techniques and solutions for lighting, heating, office equipment, the building fabric etc along with a change in people’s attitudes there can be a substantial saving in the amount spent on energy. A good example o f energy waste in GMIT is the lighting situation in the library. All the lights are switched on all day on even in places where that is adequate daylighting, which is a big waste o f energy. Also the lights for book shelves are left on. Surely all these books won’t be searched for all at the one time. It would make much more sense to have local switches that the users can control when they are searching for a particular book. Heating controls for the older parts o f the college are badly needed. A room like 834 needs a TRV to prevent it from overheating as temperatures often reach the high twenties due to the heat from the radiators, computers, solar gains and heat from users o f the room. Also in the old part o f the college it is missing vital insulation, along with not being air tight due to the era when it was built. Pumped bonded bead insulation and sealant around services and gaps can greatly improve the thermal performance o f the building and help achieve a higher BER cert. GMIT should also look at the possibility o f installing a CHP plant to meet the base heating loads. It would meet the requirement o f running 4500 hours a year and would receive some financial support from the Accelerated Capital Allowance. I f people’s attitudes are changed through energy awareness campaigns and a few changes made for more energy efficient equipment, substantial savings can be made in the energy expenditure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon, shallow junction, rapid thermal doping, vapour phase doping, atomic-layer doping, phosphorus diffusion, phosphine adsorption, sheet resistance, four-point probe, native oxidation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A more or less detailed study of the spermatogenesis in six species of Hemiptera belonging to the Coreid Family is made in the present paper. The species studied and their respective chromosome numbers were: 1) Diactor bilineatus (Fabr.) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationaliv in the first division and passing undivided to one pole in the second. 2) Lcptoglossus gonagra (Fabr.) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationally in the first division and passing undivided to one pole in the second. 3) Phthia picta (Drury) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationally in the first division and passing undivided to one pole in the second. 4) Anisocelis foliacea Fabr. : spermatogonia with 26 + X fthe highest mumber hitherto known in the Family), primary .spermatocytes with 13 + X, X dividing equationally in the first division an passing undivided to one pole in the second. 5) Pachylis pharaonis (Herbtst) : spermatogonia with 16 + X, primary spermatocytes with 8 + X. Behaviour of the heteroehromosome not referred. 6) Pachylis laticornis (Fabr.) : spermatogonia with 14 + X, primary spermatocytes with 7 + X, X passing undivided to one pole in the first division and therefore secondary spermatocytes with 7 + X and 7 chromosomes. General results and conclusions a) Pairing modus of the chromosomes (Telosynapsis or Farasynapsis ?) - In several species of the Coreld bugs the history of the chromosomes from the diffuse stage till diakinesis cannot be follewed in detail due specially to the fact that lhe bivalents, as soon as they begin to be individually distinct they appear as irregular and extremely lax chromatic areas, which through an obscure process give rise to the diakinesis and then to the metaphase chomosomes. Fortunately I was able to analyse the genesis of the cross-shaped chromosomes, becoming thus convinced that even in the less favorable cases like that of Phthia, in which the crosses develop from four small condensation areas of the diffuse chromosomes, nothing in the process permit to interpret the final results as being due to a previous telosynaptic pairing. In the case of long bivalents formed by two parallel strands intimately united at both endsegments and more or less widely open in the middle (Leptoglossus, Pachylis), I could see that the lateral arms of the crosses originate from condensation centers created by a torsion or bending in the unpaired parts of the chromosomes In the relatively short bivalents the lateral branches of the cross are formed in the middle but in the long ones, whose median opening is sometimes considerable, two asymetrical branches or even two independent crosses may develop in the same pair. These observations put away the idea of an end-to-end pairing of the chromosomes, since if it had occured the lateral arms of the crosses would always be symetrical and median and never more than two. The direct observation of a side- toside pairing of the chromosomal threads at synizesis, is in foil agreement with the complete lack of evidence in favour of telosynapsis. b) Anaphasic bridges and interzonal connections - The chromosomes as they separate from each other in anaphase they remain connected by means of two lateral strands corresponding to the unpaired segmenas observed in the bivalents at the stages preceding metaphase. In the early anaphase the chromosomes again reproduce the form they had in late diafcinesis. The connecting threads which may be thick and intensely coloured are generally curved and sometimes unequal in lenght, one being much longer than the other and forming a loop outwardly. This fact points to a continuous flow of chromosomal substance independently from both chromosomes of the pair rather than to a mechanical stretching of a sticky substance. At the end of anaphase almost all the material which formed the bridges is reduced to two small cones from whose vertices a very fine and pale fibril takes its origin. The interzonal fibres, therefore, may be considered as the remnant of the anaphasic bridges. Abnormal behaviour of the anaphase chromosomes showed to be useful in aiding the interpretation of normal aspects. It has been suggested by Schrader (1944) "that the interzonal is nothing more than a sticky coating of the chromosome which is stretched like mucilage between the daughter chromosomes as they move further and further apart". The paired chromosomes being enclosed in a commom sheath, as they separate they give origin to a tube which becomes more and more stretched. Later the walls of the tube collapse forming in this manner an interzonal element. My observations, however, do not confirm Schrader's tubular theory of interzonal connections. In the aspects seen at anaphase of the primary spermatocytes and described in this paper as chromosomal bridges nothing suggests a tubular structure. There is no doubt that the chromosomes are here connected by two independent strands in the first division of the spermatocytes and by a single one in the second. The manner in which the chromosomes separate supports the idea of transverse divion, leaving little place for another interpretation. c) Ptafanoeomc and chromatoid bodies - The colourabtlity of the plasmosome in Diactor and Anisocelis showed to be highly variable. In the latter species, one may find in the same cyst nuclei provided with two intensely coloured bodies, the larger of which being the plasmosome, sided by those in which only the heterochromosome took the colour. In the former one the plasmosome strongly coloured seen in the primary metaphase may easily be taken for a supernumerary chromosome. At anaphase this body stays motionless in the equator of the cell while the chromosomes are moving toward the poles. There, when intensely coloured ,it may be confused with the heterochromosome of the secondary spermatocytes, which frequently occupies identical position in the corresponding phase, thus causing missinterpretation. In its place the plasmosome may divide into two equal parts or pass undivided to one cell in whose cytoplasm it breaks down giving rise to a few corpuscles of unequal sizes. In Pachylis pharaonis, as soon as the nuclear membrane breate down, the plasmosome migrates to a place in the periphery of the cell (primary spermatocyte), forming there a large chromatoid body. This body is never found in the cytoplasm prior to the dissolution of the nuclear membrane. It is certain that chromatoid bodies of different origin do exist. Here, however, we are dealing, undoubtedly, with true plasmosomes. d) Movement of the heterochromosome - The heterochromosome in the metaphase of the secondary spermatocytes may occupy the most different places. At the time the autosomes prient themselves in the equatorial plane it may be found some distance apart in this plane or in any other plane and even in the subpolar and polar regions. It remains in its place during anaphase. Therefore, it may appear at the same level with the components of one of the anaphase plates (synchronism), between both plates (succession) or between one plate and tbe pole (precession), what depends upon the moment the cell was fixed. This does not mean that the heterochromosome sometimes moves as quickly as the autosomes, sometimes more rapidly and sometimes less. It implies, on the contrary, that, being anywhere in the cell, the heterochromosome m he attained and passed by the autosomes. In spite of being almost motionless the heterochromosome finishes by being enclosed in one of the resulting nuclei. Consequently, it does move rapidly toward the group formed by the autosomes a little before anaphase is ended. This may be understood assuming that the heterochromosome, which do not divide, having almost inactive kinetochore cannot orient itself, giving from wherever it stays, only a weak response to the polar influences. When in the equator it probably do not perform any movement in virtue of receiving equal solicitation from both poles. When in any other plane, despite the greater influence of the nearer pole, the influence of the opposite pole would permit only so a slow movement that the autosomes would soon reach it and then leave it behind. It is only when the cell begins to divide that the heterochromosome, passing to one of the daughter cells scapes the influence of the other and thence goes quickly to join the autosomes, being enclosed with them in the nucleus formed there. The exceptions observed by BORING (1907) together with ; the facts described here must represent the normal behavior of the heterocromosome of the Hemiptera, the greater frequency of succession being the consequence of the more frequent localization of the heterochromosome in the equatorial plane or in its near and of the anaphase rapidity. Due to its position in metaphase the heterochromosome in early anaphase may be found in precession. In late anaphase, oh the contrary ,it appears almost always in succession. This is attributed to the fact of the heterochromosome being ordinairily localized outside the spindle area it leaves the way free to the anaphasic plate moving toward the pole. Moreover, the heterochromosome being a round element approximately of the size of the autosomes, which are equally round or a little longer in the direction of the movement, it can be passed by the autosomes even when it stands in the area of the spindle, specially if it is not too far from the equatorial plane. e) The kinetochore - This question has been fully discussed in another paper (PIZA 1943a). The facts treated here point to the conclusion that the chromosomes of the Coreidae, like those of Tityus bahiensis, are provided with a kinetochore at each end, as was already admitted by the present writer with regard to the heterochromosome of Protenor. Indeed, taking ipr granted the facts presented in this paper, other cannot be the interpretation. However, the reasons by which the chromosomes of the species studied here do not orient themselves at metaphase of the first division in the same way as the heterochromosome of Protenor, that is, with the major axis parallelly to the equatorial plane, are claiming for explanation. But, admiting that the proximity of the kinetochores at the ends of chromosomes which do not separate until the second division making them respond to the poles as if they were a single kinetochore ,the explanation follows. (See PIZA 1943a). The median opening of the diplonemas when they are going to the diffuse stage as well as the reappearance of the bivalents always united at the end-segments and open in the middle is in full agreement with the existence of two terminal kinetochores. The same can be said with regard to the bivalents which join their extremities to form a ring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper an account is given of the principal facts observer in the meiosis of Euryophthalmus rufipennis Laporte which afford some evidence in favour of the view held by the present writer in earlier publications regarding the existence of two terminal kinetochores in Hem ip ter an chromosomes as well as the transverse division of the chromosomes. Spermatogonial mitosis - From the beginning of prophase until metaphase nothing worthy of special reference was observed. At anaphase, on the contrary, the behavior of the chromosomes deserves our best attention. Indeed, the chromoso- mes, as soon as they begin to move, they show both ends pronouncedly turned toward the poles to which they are connected by chromosomal fibres. So a premature and remarkable bending of the chromosomes not yet found in any other species of Hemiptera and even of Homoptera points strongly to terminally localized kinetochores. The explanation proposed by HUGHES-SCHRADER and RIS for Nautococcus and by RIS for Tamalia, whose chromosomes first become bent late in anaphase do not apply to chromosomes which initiate anaphase movement already turned toward the corresponding pole. In the other hand, the variety of positions assumed by the anaphase chromosomes of Euryophthalmus with regard to one another speaks conclusively against the idea of diffuse spindle attachments. First meiotic division - Corresponding to the beginning of the story of the primary spermatocytes cells are found with the nucleus entirelly filled with leptonema threads. Nuclei with thin and thick threads have been considered as being in the zygotente phase. At the pachytene stage the bivalents are formed by two parallel strands clearly separated by a narrow space. The preceding phases differ in nothing from the corresponding orthodox ones, pairing being undoubtedly of the parasynaptic type. Formation of tetrads - When the nuclei coming from the diffuse stage can be again understood the chromosomes reappear as thick threads formed by two filaments intimately united except for a short median segment. Becoming progressively shorter and thicker the bivalents sometimes unite their extremities forming ring-shaped figures. Generally, however, this does not happen and the bivalents give origin to more or less condensed characteristic Hemipteran tetrads, bent at the weak median region. The lateral duplicity of the tetrads is evident. At metaphase the tetrads are still bent and are connected with both poles by their ends. The ring-shaped diakinesis tetrads open themselves out before metaphase, showing in this way that were not chiasmata that held their ends together. Anaphase proceeds as expected. If we consider the median region of the tetrads as being terminalized chiasmata, then the chromosomes are provided with a single terminal kinetochore. But this it not the case. A critical analysis of the story of the bivalents before and after the diffuse stage points to the conclusion that they are continuous throughout their whole length. Thence the chromosomes are considered as having a kinetochore at each end. Orientation - There are some evidences that Hemipteran chromosomes are connected by chiasmata. If this is true, the orientation of the tetrads may be understood in the following manner: Chiasmata being hindered to scape by the terminal kinetochores accumulate at the ends of the tetrads, where condensation begins. Repulsion at the centric ends being prevented by chiasmata the tetrads orient themselves as if they were provided with a single kinetochore at each extremity, taking a position parallelly to the spindle axis. Anaphase separation - Anaphase separation is consequently due to a transverse division of the chromosomes. Telophase and secund meiotic division - At telophase the kinetochore repeli one another following the moving apart of the centosomes, the chiasmata slip toward the acentric extremities and the chromosomes rotate in order to arrange themselves parallelly to the axis of the new spindle. Separation is therefore throughout the pairing plane. Origin of the dicentricity of the chromosomes - Dicentricity of the chromosomes is ascribed to the division of the kinetochore of the chromosomes reaching the poles followed by separation and distension of the chromatids which remain fused at the acentric ends giving thus origin to terminally dicentric iso-chromosomes. Thence, the transverse division of the chromosomes, that is, a division through a plane perpendicular to the plane of pairing, actually corresponds to a longitudinal division realized in the preceding generation. Inactive and active kinetochores - Chromosomes carrying inactive kinetochore is not capable of orientation and active anaphasic movements. The heterochromosome of Diactor bilineatus in the division of the secondary spermatocytes is justly in this case, standing without fibrilar connection with the poles anywhere in the cell, while the autosomes are moving regularly. The heterochromosome of Euryophthalmus, on the contrary, having its kinetochores perfectly active ,is correctly oriented in the plane of the equator together with the autosomes and shows terminal chromosomal connection with both poles. Being attracted with equal strength by two opposite poles it cannot decide to the one way or the other remaining motionless in the equator until some secondary causes (as for instances a slight functional difference between the kinetochores) intervene to break the state of equilibrium. When Yiothing interferes to aide the heterochromosome in choosing its way it distends itself between the autosomal plates forming a fusiform bridge which sometimes finishes by being broken. Ordinarily, however, the bulky part of the heterochromosome passes to one pole. Spindle fibers and kinetic activity of chromosomal fragments - The kinetochore is considered as the unique part of the chromosome capable of being influenced by other kinetochore or by the poles. Under such influence the kinetochore would be stimulated or activited and would elaborate a sort of impulse which would run toward the ends. In this respect the chromosome may be compared to a neüròn, the cell being represented by the kinetochore and the axon by the body of the chromosome. Due to the action of the kinetochore the entire chromosome becomes also activated for performing its kinetic function. Nothing is known at present about the nature of this activation. We can however assume that some active chemical substance like those produced by the neuron and transferred to the effector passes from the kinetochore to the body of the chromosome runing down to the ends. And, like an axon which continues to transmit an impulse after the stimulating agent has suspended its action, so may the chromosome show some residual kinetic activity even after having lost its kinetochore. This is another explanation for the kinetic behavior of acentric chromosomal fragmehs. In the orthodox monocentric chromosomes the kinetic activity is greater at the kinetochore, that is, at the place of origin of the active substance than at any other place. In chromosomes provided with a kinetochore at each end the entire body may become active enough to produce chromosomal fibers. This is probably due to a more or less uniform distribution and concentration of the active substance coming simultaneously from both extremities of the chromosome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particular aspects of the meiosis of two species of Hemiptera, namely Megalotomus pallescens (Stal) (Coriscidae) and Jadera sanguinolenta (Fabr.); (Corizidae) are described and discussed in this paper. Megalotomus pallescens This species has primary spermatocytes provided with 7 autosomal tetrads plus a single sex chromosome. The X is smaller than the autosomes and may be found either in the periphery of the circle formed by the autosomal tetrads or in the center together with the m-tetrad which always occupies this position. The X chromosome - In the primary spermatocytes this element, which is tetradiform, orients itself parallelly to the spindle axis and divides transversely by its median constriction. In the secondary spermatocytes it passes undivided to one pole. The m-chromosomes - These chromosomes have been frequently found in close association with the sex chromosome in nuclei wich have passed the diffuse stage, a fact which was considered as affording some evidence in support of the idea /developed by the present writer in another paper with regard to the origin of the m-chromosomes from the sex chromosome. Formation of tetrads - Tetrads appear at first as irregular areas of reticular structure, becoming later more and more distinct. Then, two chromosomal strands very loose and irregular in outline, connected whit each other by several transverse filaments, begin to develop in each area. Growing progressively shorter, thicker and denser, these strands soon give origin to typical Hemiptera tetrads. Jadera sanguinolenta Spermatogonia of this species have 13 chromosomes, that is, 10 autosomes, 2 m-chromosomes and one sex chromosome, one pair of autosomes being much larger than the rest. Chromosomes move toward the poles with both ends looking to them. Primary spermatocytes show 6 tetrads and a single X. The sex chromossome in the first division of the spermatocytes divides as if it was a tetrad, passing undivided to one pole in the second division. In the latter it does not orient, being found anywhere in the cells. Its most common situation in anaphase corresponds therefore to precession. Tetrads are formed here in an entirely different way : the bivalents as they become distinct in the nuclei which came out. of the diffuse stage they appear in form of two thin threads united only at the extremities, an aspect which may better be analized in the larger bivalent. Up from this stage the formation of the tetrads is a mere process of shortening and thickening of both members of the pair. Due to the fact that the paired chromosomes are well separated from each other throughout their entire lenght, the author concluded that chiasmata, if present, are accumulated at the very ends of the bivalents. If no chiasmata have been at all formed, then, what holds together the corresponding extremities must be a strong attraction developed by the kinetochores. If one interprets the bivalents represented in the figures 17-21 as formed by four chromatids paired by one of the ends and united by the opposite one, then the question of the diffuse attachment becomes entirely disproved since it is exactly by the distal extremities that the tetrads later will be connected with the poles. In the opinion of the present writer the facts referred to above are one of the best demonstration at hand of the continuity of the paired threads and at the same time of the dicentricity of Hemiptera chromosomes. In view of the data hitherto collected by the author the behavior of the sex chromosome of the Hemiptera whose males are of the XO type may be summarized as follows: a) The sex chromosome in the primary metaphase appears longitudinally divided, without transverse constriction. It is oriented with the extremities in the plane of the equator and its chromatids separate by the plane of division. (Euryophthalmus, Protenor). In the second division the sex chromosome, provided as it is with an active kinetochore at each end, orients itself with its lenght parallelly to the spindle axis and passes undivided to one pole (Protenor?), or loses to the other pole a centric end (Euryophthalmus) In the latter case it has to become dicentric by means of a longitudinal spliting beginning at the kinetochore. b) The sex chromosome in the primary metaphase is tetradiform, that is, it is provided with a longitudinal split and a median transverse constriction. Orients with its length paral lelly to the spindle axis (what is probably due to the kinetochores being not yet divided) and divides transversely. (Corizas hyalinus, Megalotomus pallescens). in the secondary metaphase the sex chromosome which turned to be dicentric in consequence of a longitudinal spliting initiated in the kineto chore, orients perpendicularly to the equatorial plane and without losing anyone of its extremities passes undivided to one pole (Megalotomus). Or, distending between both poles passes to one side, in which case it loses one of its ends to the other side. (Corizas hyalinus). c) The very short sex chromosome in the first division of the spermatocytes orients in the same manner aa the tetrads and divides transversely. In the second division, due to the inactivity o the inetochore, it remains monocentric and motionless anywhere in the cell, finishing by being enclosed in the nearer nucleus. In the secondary telophase it recuperates its dicentricity at the same time as the autosomal chromatids. (Jadera sanguinolenta, Diactor bilineatus). d) The sex chromosome in the first division orients in the equador with its longitudinal axis parallelly to the spindle axis passing integrally to one pole or, distending itself between the anaphase plates, loses one of its ends to the opposite pole. In this case it becomes dicentric in the prometaphase of the second division, behaving in this division as the autossomes. It thus divides longitudnally. (Pachylis laticomis, Pachylis pharaonis).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three species studied have 19 chromosomes, being one heterochromosome, one pair of microchromosomes and 8 pairs of autosomes. The microchromosomes of Hypselonotus fulvus are amongst the largest we know. During the synizesis, in Hypselonotus fulvus, we can see in several strands that scape from the chromatic knot a place in which they are widley open. As, in that phase the chromosomes have both ends converging to the same place, the openings suggest a side-to-side pairing of the chromosomal threads. The tetrads are like that studied by Piza (1945-1946). The bivalents are united side by side at their entire length. The unpaired part at the midle of the bivalents gives origin to the arms of the cross-shapede tetrads. The chromosomes have a kinetochore at each end. The bivalents sometimes unite their extremities to form ring-shaped figures, which open themselves out before metaphase. The tetrads are oriented parallelly to the spindle axis. At telophase the kinetochores repeli one another, the chiasmata, if present, slip toward the acentric extremities and the chromosomes rotate in order to arrange themselves parallelly to the axis of the new spindle. Separation is therefore through the pairing plane. In the spermatogonial anaphase of Hypselonotus subterpunctatus the chromosomes are curved to the poles, like those described by PIZA (1946) and PIZA and ZAMITH (1946). The sex chromosomes in Hypselonotus interruptus and Hypselonotus fulvus appears longitudinally divided. It is oriented with the ends in the plane of the equator and its chomatids separate by the plane of division. In the second division the sex chromosome, provided as it is with an actve klnetochore at each end, orients itself with its length parallelly to the spindle axis and passes undivided to one pole. Sometimes it is distended between the poles. This corresponds to case (a) established by PIZA (1946) for the sex chromosomes of Hemiptera In Hypselonotus subterpunctatus the sex chromosome, in the first division of the spermatocytes, orients like the tetrads and divides transversaly. In the second division, as its kinetochore becomes inactive, it remans monocentric, does not orient in the spindle, and is finally enclosed in the nearer nucleus. In the secondary telophase it recuperates its dicentricity like the autosomal chromatids. This behavior corresponds to case (c) of PIZA (1946).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1.-Since the parietal endocarditis represents a chapter generally neglected, owing to the relative lack of cases, and somewhat confused because there various terms have been applied to a very same morbid condition, it justifies the work which previously we tried to accomplish, of nosographic classification. Taking into account the functional disturbances and the anatomical changes, all cases of parietal endocarditis referred to in the litterature were distributed by the following groups: A-Group-Valvulo-parietal endocarditis. 1st . type-Valvulo-parietal endocarditis per continuum. 2nd. type-Metastatic valvulo-parietal endocarditis. 3rd. type-Valvulo-parietal endocarditis of the mitral stenosis. B-Group-Genuine parietal endocarditis. a) with primary lesions in the myocardium. b) with primary lesions in the endocardium. 4th type-Fibrous chronic parietal endocarditis (B A Ü M L E R), « endocarditis parietalis simplex». 5th type-Septic acute parietal endocarditis (LESCHKE), «endocarditis parietalis septica». 6th type-Subacute parietal endocarditis (MAGARINOS TORRES), «endocarditis muralis lenta». 2.-Studying a group of 14 cases of fibrous endomyocarditis with formation of thrombi, and carrying together pathological and bacteriological examinations it has been found that some of such cases represent an infectious parietal endocarditis, sometimes post-puerperal, of subacute or slow course, the endocardic vegetations being contamined by pathogenic microörganisms of which the most frequent is the Diplococcus pneumoniae, in most cases of attenuated virulence. Along with the infectious parietal endocarditis, there occur arterial and venous thromboses (abdominal aorta, common illiac and femural arteries and external jugular veins). The case 5,120 is a typical one of this condition which we name subacute parietal endocarditis (endocarditis parietalis s. muralis lenta). 3.-The endocarditis muralis lenta encloses an affection reputed to be of rare occurrence, the «myocardite subaigüe primitive», of which JOSSERAND and GALLAVARDIN published in 1901 the first cases, and ROQUE and LEVY, another, in 1914. The «myocardite subaigüe primitive» was, wrongly, in our opinion, included by WALZER in the syndrome of myocardia of LAUBRY and WALZER, considering that, in the refered cases of JOSSERAND and GALLAVARDIN and in that of ROQUE and LEVY, there are described rather considerable inflammatory changes in the myocardium and endocardium. The designation «myocardia» was however especially created by LAUBRY and WALZER for the cases of heart failure in which the most careful aetiologic inquiries and the most minucious clinical examination were unable to explain, and in which, yet, the post-mortem examination did not reveal any anatomical change at all, it being forcible to admit, then, a primary functional change of the cardiac muscle fibre. This special cardiac condition is thoroughly exemplified in the observation that WALZER reproduces on pages 1 to 7 of his book. 4.-The clinical picture of the subacute parietal endocarditis is that of heart failure with oedemas, effusion in the serous cavities and passive chronic congestion of the lungs, liver, kideys and spleen associated, to that of an infectious disease of subacute course. The fever is rather transient oscillating around 99.5 F., being intersected with apyretic periods of irregular duration; it is not dependent on any evident extracardiac septic infection. In other cases the fever is slight, particularly in the final stage of the disease, when the heart failure is well established. The rule is to observe then, hypothermy. The cardiac-vascular signs consist of enlargement of the cardiac dullness, smoothing of the cardiac sounds, absence of organic murmurs and accentuated and persistent tachycardia up to a certain point independent of fever. The galloprhythm is present, in most cases. The signs of the pulmonary infarct are rather expressed by the aspect of the sputum, which is foamy and blood-streaked than by the classic signs. Cerebral embolism was a terminal accident on various cases. Yet, in some of them, along with the signs of septicemia and of cardiac insufficiency, occurred vascular, arterial (abdominal aorta, common illiac and femurals arteries) and venous (extern jugular veins) thromboses. 5. The autopsy revealed an inflammatory process located on the parietal endocardium, accompanied by abundant formation of ancient and recent thrombi, being the apex of the left ventricle, the junction of the anterior wall of the same ventricle, with the interventricular septum, and the right auricular appendage, the usual seats of the inflammatory changes. The region of the left branch of HIS’ bundle is spared. The other changes found consist of fibrosis of the myocardium (healed infarcts and circumscribed interstitial myocarditis), of recent visceral infarcts chiefly in lungs, spleen and brain, of recent or old infarcts in the kidneys (embolic nephrocirrhosis) and in the spleen, and of vascular thromboses (abdominal aorta, common illiacs and femurals arteries and external jugular veins), aside from hydrothorax, hydroperitoneum, cutaneous oedema, chronic passive congestion of the liver, lungs, spleen and kidneys and slight ictericia. 6. In the subacute parietal endocarditis the primary lesions sometimes locate themselves at the myocardium, depending on the ischemic necrosis associated to the arteriosclerosis of the coronariae arteries, or on an specific myocarditis. Other times, the absence of these conditions is suggestive of a primary attack to the parietal endocardium which is then the primary seat of the lesions. It matters little whatever may be the initial pathogenic mechanism; once injured the parietal endocardium and there being settled the infectious injury, the endocarditis develops with peculiar clinical and anatomical characters of remarkable uniformity, constituting an anatomo-clinical syndrome. 7.-The histologic sections show that recent lesions…

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper colligates the notions acquired in previous investigations, already published, and new observations upon diseases of the psittacidae, liable to be confused with psittacosis of parrots. The author calls attention to the indifference with regard to this question shown by investigators, even by those who dealt with the study of this disease on the occasion of the latest outbreak of psittacosis, in flagrant contrast with the researches upon the alterations induced by pathogenic agents of other diseases transmissible to man, when these agents pass through animals or when the latter are depositaries of the virus. This remark considerably enhances the importance of the presence paper from a hygienic and epidemiologic point of view, representing moreover a contribution to general knowledge and to veterinary medicine. The researches carried out since the appearance of the latest outbreak of psittacosis,-which occurred simultaneously with an epizooty in parrots lodged in aviary of the park of Agua Branca (Directory of Animal Industry of the State São Paulo)-led to the verification of the frequent existence in these animals of various diseases liable to be confused with psittacosis. These diseases are due to two kinds of pathogenic agents: virus and bacteria. In the first group there are to be found the diseases occasioned by the virus of human psittacosis, discovered by Western, Bedson and Simpson, and the disease me with in parrots coming from traders in S. Paulo. The infections by bacteria of the genus Salmonella and by those of other genera belong to the second group. As differential characters of the two infections due to virus, delineated on the strength of notions drawn from a detailed experimental study and from the literature on this subject, the following are given: ¹ Samples of our virus were sent, for comparison, to various investigators of psittacosis. Amongst them, Prof. M. Rivers acceded to our request; he found its nature to be different from that of the virus of psittacosis studiedby him. We are very much obliged to him for the attention he paid to this verification. Virus of psittacosis - Infectiousness: man, monkey, rabbit, mouse, hen, canary. Neurotropic affinity. Inclusions: small, protoplasmic. Exsiccation: the virus has good power of preservation. Symptoms: inactivity, drowsiness, frequent diarrhoea, oculo-nasal discharge and cough, coma. Duration: 4 to 5 days. Bodily lesions: congestion of intestines, splenomegaly. Virus of S. Paulo - Infects only psittacidae, particularly those of the genus Amazona. No localization in the nervous system. Large, nuclear. Is rapidly destroyed. Inactivity, inappetency, adynamia (drooping of the wings, indifference, leaning its beak against the bars of the cage in order not to fall down); profuse diarrhoea, of whitish stools, at times enterorrhagia; prolonged coma. 2 to 8 days. Foci of yellowish necrosis in liver, spleen and lung. At times, congestion of intestines. Characteristic features common to the two viruses.-They act in great dilutions, filter through tight candles though being partly retained, are preserved under glycerine or Bedson's solution, are stable at 55°C. heat and are destroyed by physical and chemical agents. Both virus diseases are very seldom met with in psittacidae: only once, amongst numberless sick parrots, the author met with a disease of the virus differring from that of psittacosis. This disease, greatly transmissible to man, ought to be more frequent, if it were common in parrots. On the contrary, bacteria cause diseases in these animals with great frequency, presenting variable characters, from a severe epizootic form, rapidly mortal, to ambulatory or silent forms, for the most part developing towards a cure or assuming a chronic character. Amongst the bacteria which cause the infection of this group the salmonellae predominate and amongst them the bacterium discovered by Nocard, as well as a species which in the course of this study is characterized under the name of Salmonella nocardi. The author believes that in the epizooty from which Nocard isolated his bacterium there was association of the virus-disease inducing the epizooty of that epoch in Paris with the bacterial disease, as must have happened in Argentina, where the disease was transmitted to man, and Santillan, according to Barros, isolated from the sick parrots bacteria of the genus Salmonella. The diseases of the two groups, that due to virus and that due to bacteria, are differentiated: Virus-diseases - Evolution: rapid, nearly always followed by death. Symptoms: sadness, profuse diarrhoea, of whitish stools, at times enterorrhagia, complete inappetency, adynamia, indifference, prolonged coma. Clinical forms: acute and subacute. Lesions: Foci of necrosis in liver and spleen without cellular reaction around the focus, yellow liver, multiple serositis. Presence of protoplasmic or nuclear granulations. Bacteriology: Complete lack or inconstant presence of bacteria in the organs and blood. Infectiousness of the organs and blood after filtration: positive. Bacterial diseases - Varies from one week to a month or more, not always fatal. Sadness, partial inappetency, tremblings, intensive thirst, mucous or mucosanguineous diarrhoea, lack of adynamia (reacts to stimulations and moves well at any time of the disease, though showing little disposition to locomotion), soiling of feathers. Frustrate, acute, subacute and chronic. Hepatic and intestinal cogestion, foci of necrosis in liver, spleen and lung with cellular reaction around the focus. Lack of granulations. Constant presence of bacteria in the organs and blood. Negative. The analysis of the litterature shows that the characteristic features of the diseases in parrots referred to parrot psittacosis, more frequently approach the bacterial diseases here described of these animals, a hypothesis which is reinforced by the observation of the greater frequency of infections...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The last 20 years have seen a significant evolution in the literature on horizontal inequity (HI) and have generated two major and "rival" methodological strands, namely, classical HI and reranking. We propose in this paper a class of ethically flexible tools that integrate these two strands. This is achieved using a measure of inequality that merges the well-known Gini coefficient and Atkinson indices, and that allows a decomposition of the total redistributive effect of taxes and transfers in a vertical equity effect and a loss of redistribution due to either classical HI or reranking. An inequality-change approach and a money-metric cost-of-inequality approach are developed. The latter approach makes aggregate classical HI decomposable across groups. As in recent work, equals are identified through a nonparametric estimation of the joint density of gross and net incomes. An illustration using Canadian data from 1981 to 1994 shows a substantial, and increasing, robust erosion of redistribution attributable both to classical HI and to reranking, but does not reveal which of reranking or classical HI is more important since this requires a judgement that is fundamentally normative in nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first case of Kala-azar in Colombia was discovered in Soledad, S. Vicente do Chucuri, Dept. Santander, by Gast-Galvis who viscerotomized a three year old girl deceased in December, 1943. In 1944, fifty-three Phlebotominae were collected in the chicken pen of the girl's house, two new species included. Mangabeira helped by A. Gast Galvis, Juan Antonio Montoya and E. Osorno Mesa, collected some Phlebotomus in that country. The geographical distribution of the species of Phlebotomus collected in Colombia (P. abonnenci, P. camposi, P. columbianus, P. dubitans, P. gasti, P. montoyai, P. saulensis, P. serranus, P. triramulus) and two species of Brumptomyia (B. beaupertuyi and b mesari), are included. our description of the male P. columbianus is based on some specimens found in association with females. However, doubts exist about such association of sexes. There is no correspondence between the length of the spicules and the ducts of spermathecae. Besides, the specimens were not obtained by raising. The following new species are described and compared with previously known ones: a) Phlebotomus gasti sp. n. differs from the other species by a protruding tubercle in the gubernaculum. It has also fewer setae in the tuft of the basistyle, a different length of the inferior gonapophyses, and a differently shaped clasper. b) Phlebotomus dubitans sp. n. differs from P. walkeri and P. deanei (according to personal information from O. Theodor, who examined the types, they are identical to P. williamsi and P. sericeus respectively), mainly because these species have the inferior gonapophyses larger than the basistyle and fewer setae in the basistyle. P. evandroi is separated by the shape of the claspers and by the tuft of setae of the basistyle. P. marajoensis is the closest relative to P. dubitans. There is a possibility of their being synonymous. On the other hand, they can be differentiated by the existence of three extra distal spines in P. marajoensis. There is also a difference in their palpal indexes: for marajoensis I - II - IV - III - V, and for dubitans I - IV (III - II) - V. We notice, too, that the inferior gonapophyses in P. marajoensis is a little shorter. P. marajoensis has a long seta in the basistyle (clearly shown in the original drawing), not found in the new species. c) Phlebotomus montoyai sp. n.: The closest relatives are P. noguchii, P. peruensis, P. pescei, P. quinquifer and P. rickardi. They differ from the new species by the number and length of the setae of the basistyle tuft which are more numerous and longer in the new species. The shapes of their claspers are also different. Other differences are: the basal portion of the basistyle in P. noguchii is very wide (in montoyai it is narrower); the intermediate spine of the dististyle is located on a protruding tubercle ( in the new species there is hardly a tubercle); the spicules are long, and the inferior gonapophyses is longer than the basistyle. P. quinquifer and P. rickardi have a shorter dististyle and narrower wings, with different venation. The main difference, however lies, in the M4, which ends almost at the level of the junction of M1 with M2 (in P. montoyai the M4 ends far behind). In P. peruensis and P. pescei the intermediary spine of the dististyle is closer to the distal spine than to the basal one, whereas in the new species it is situated between the two pairs. Their inferior gonapophyses is longer than the basistyle. d) Brumptomyia mesai sp. n. - Closest relatives are: B. hamatus, B. pentacanthus, B. beaupertuyi which are easily separated from the new species because the tufts of their basistyle have thin and differently shaped hairs. Also their claspers are shaped differently. B. avellari is also easily recognized on account of the twisted aspect of its clasper and because the basal tuft of the basistyle has few setae, B. brumpti tuft of setae arise directly from the basistyle; these setae are stronger than those of the new species. It has 8 blade-like setae located on the inner surface of the distal half, whereas the new species has only six setae. In B. brumpti, there are three median and two terminal spines in the dististyle; in the new species, there are two median and two terminal spines and one between them, which is closer to the two median spines. The comparison with B. galindoi is based in a specimen determined by Fairchild and deposited in the entomological collection of the "Faculdade de Higiene e Saúde Pública da Universidade de S. Paulo". The genitalia of the new species is much shorter, in galindoi the inferior gonapophyses is 0,8 mm long whereas in B. mesai it hardly reaches 0,6 mm. The shape of the clasper and the distribution of its setae are different. The sub-median lamellae, besides being longer in B. galindoi are also longer in comparison with the other parts of the genitalia. The gubernaculum of the new species is longer, thinner, and more pointed; in B. galindoi it is shorter and triangular. In the drawing published by Fairchild and Hertig 91947), the basistyle shows 8 blade-like setae on the distal half, whereas in the new species only six are found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CD4⁺ T helper cells are playing critical roles in host defense to pathogens and in the maintenance of immune homeostasis. Naïve CD4⁺T cells, upon antigen-specific recognition, receive signals to differentiate into distinct effector T helper cell subsets characterized by their pattern of cytokine production and specific immune functions. A tight balance between these different subsets ensures proper control of the immune response. There is increasing evidence revealing an important role for Notch signaling in the regulation of CD4⁺T helper cell differentiation or function in the periphery. However, the exact mechanisms involved remain unclear and appear contradictory. In this review, we summarize current knowledge and discuss recent advances in the field to reconcile different views on the role of Notch signaling in the differentiation of functional T helper subsets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A description of Physa marmorata Guilding, 1828, based on material collected at its type-locality, the Caribbean island of Saint Vincent, is presented. The shell is thin, horn-colored, surface very glossy, diaphanous. Spire acute, elevated; protoconch distinct, rounded-conical, reddish-brown; five not shouldered, broadly convex whorls with subobsolete spiral lines and thin growth lines. Aperture elongated, 1.4-2.0 times as long as the remaining shell length, narrow obovate-lunate; upper half acute-angled,lower half oval,narrowly rounded at the base, outer lip sharp, inner lip completely closing the umbilical region; a very distinct callus on the parietal wall; columellar lip with a low ridge gradually merging into the callus. ratios: shell width/shell length = 0.44 - 0.52 (mean 0.47); spire length /shell lenght = 0.33-0.41 (mean 0.39); aperture length/shell lenght = 0.59-0.67 (mean 0.62). Oral lappets laterally mucronate, foot spatulate with deeply pigmented acuminate tail. Mantle reflection with 6-10 short triangular dentations covering nearly half the right surface of the body whorl, and 4-6 covering a part of the ventral wall. Body surface with tiny dots of greenish-yellow pigment besides melanin. Renal tube tightly folded in toa zigzag course. Ovotestis diverticula acinous, laterally pressed against each other around a collecting canal. Ovispermiduct with well-developed seminal vesicle. oviduct highly convoluted, merging into a less convoluted nidamental gland which narrows to a funnel-shaped uterus and a short vagina. Spermathecal body oblong, more or less constricted in the middle and somewhat curved; spermathecal duct uniformly narrow, a little longer than be body. About 20 prostatic diverticula, simple, bifurcate or divided into a few short branches, distalmost ones assembled into a cluster. Penis long, nearly uniformly narrow; penial canal with lateral opening about the junction of its middle and lower thirds. Penial sheath with a bulbous terminal expasion the tip of which isinserted into the caudal end of the prepuce. Prepuce shouldered, much wider than the narrow portion of the penial sheath. Penial sheath/prepuce ratio about 2.08 (1.45-2.75). The main extrinsic muscles of the penial complex are a retractor, with a branch attached to the bulb, and another to the caudal end of the penial sheath; and a protractor, with a branch attached to the shoulder of the prepuce and adjoining area of the penial sheath, and another to the caudal end of the penial sheath. Egg capsule C-shaped, with 10-30 elliptical eggs (snails 10mm long) measuring about 1.10 mm (0.90-1.32) through the long axis and surrounded by an inner and an outer lamellate membranes. Jaw a simple obtusely V-shaped plate. radula will be described separately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stress, molecular crowding and mutations may jeopardize the native folding of proteins. Misfolded and aggregated proteins not only loose their biological activity, but may also disturb protein homeostasis, damage membranes and induce apoptosis. Here, we review the role of molecular chaperones as a network of cellular defenses against the formation of cytotoxic protein aggregates. Chaperones favour the native folding of proteins either as "holdases", sequestering hydrophobic regions in misfolding polypeptides, and/or as "unfoldases", forcibly unfolding and disentangling misfolded polypeptides from aggregates. Whereas in bacteria, plants and fungi Hsp70/40 acts in concert with the Hsp100 (ClpB) unfoldase, Hsp70/40 is the only known chaperone in the cytoplasm of mammalian cells that can forcibly unfold and neutralize cytotoxic protein conformers. Owing to its particular spatial configuration, the bulky 70 kDa Hsp70 molecule, when distally bound through a very tight molecular clamp onto a 50-fold smaller hydrophobic peptide loop extruding from an aggregate, can locally exert on the misfolded segment an unfolding force of entropic origin, thus destroying the misfolded structures that stabilize aggregates. ADP/ATP exchange triggers Hsp70 dissociation from the ensuing enlarged unfolded peptide loop, which is then allowed to spontaneously refold into a closer-to-native conformation devoid of affinity for the chaperone. Driven by ATP, the cooperative action of Hsp70 and its co-chaperone Hsp40 may thus gradually convert toxic misfolded protein substrates with high affinity for the chaperone, into non-toxic, natively refolded, low-affinity products. Stress- and mutation-induced protein damages in the cell, causing degenerative diseases and aging, may thus be effectively counteracted by a powerful network of molecular chaperones and of chaperone-related proteases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A collaborative exercise was carried out by the European DNA Profiling Group (EDNAP) in order to evaluate the distribution of mitochondrial DNA (mtDNA) heteroplasmy amongst the hairs of an individual who displays point heteroplasmy in blood and buccal cells. A second aim of the exercise was to study reproducibility of mtDNA sequencing of hairs between laboratories using differing chemistries, further to the first mtDNA reproducibility study carried out by the EDNAP group. Laboratories were asked to type 2 sections from each of 10 hairs, such that each hair was typed by at least two laboratories. Ten laboratories participated in the study, and a total of 55 hairs were typed. The results showed that the C/T point heteroplasmy observed in blood and buccal cells at position 16234 segregated differentially between hairs, such that some hairs showed only C, others only T and the remainder, C/T heteroplasmy at varying ratios. Additionally, differential segregation of heteroplasmic variants was confirmed in independent extracts at positions 16093 and the poly(C) tract at 302-309, whilst a complete A-G transition was confirmed at position 16129 in one hair. Heteroplasmy was observed at position 16195 on both strands of a single extract from one hair segment, but was not observed in the extracts from any other segment of the same hair. Similarly, heteroplasmy at position 16304 was observed on both strands of a single extract from one hair. Additional variants at positions 73, 249 and the HVII poly(C) region were reported by one laboratory; as these were not confirmed in independent extracts, the possibility of contamination cannot be excluded. Additionally, the electrophoresis and detection equipment used by this laboratory was different to those of the other laboratories, and the discrepancies at position 249 and the HVII poly(C) region appear to be due to reading errors that may be associated with this technology. The results, and their implications for forensic mtDNA typing, are discussed in the light of the biology of hair formation.