902 resultados para TEMPORAL DYNAMICS
Resumo:
Fractional order dynamics in physics, particularly when applied to diffusion, leads to an extension of the concept of Brown-ian motion through a generalization of the Gaussian probability function to what is termed anomalous diffusion. As MRI is applied with increasing temporal and spatial resolution, the spin dynamics are being examined more closely; such examinations extend our knowledge of biological materials through a detailed analysis of relaxation time distribution and water diffusion heterogeneity. Here the dynamic models become more complex as they attempt to correlate new data with a multiplicity of tissue compartments where processes are often anisotropic. Anomalous diffusion in the human brain using fractional order calculus has been investigated. Recently, a new diffusion model was proposed by solving the Bloch-Torrey equation using fractional order calculus with respect to time and space (see R.L. Magin et al., J. Magnetic Resonance, 190 (2008) 255-270). However effective numerical methods and supporting error analyses for the fractional Bloch-Torrey equation are still limited. In this paper, the space and time fractional Bloch-Torrey equation (ST-FBTE) is considered. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. Firstly, we derive an analytical solution for the ST-FBTE with initial and boundary conditions on a finite domain. Secondly, we propose an implicit numerical method (INM) for the ST-FBTE, and the stability and convergence of the INM are investigated. We prove that the implicit numerical method for the ST-FBTE is unconditionally stable and convergent. Finally, we present some numerical results that support our theoretical analysis.
Resumo:
The question "what causes variety in organisational routines" is of considerable interest to organisational scholars, and one to which this thesis seeks to answer. To this end an evolutionary theory of change is advanced which holds that the dynamics of selection, adaptation and retention explain the creation of variety in organisational routines. A longitudinal, multi-level, multi-case analysis is undertaken in this thesis, using multiple data collection strategies. In each case, different types of variety were identified, according to a typology, together with how selection, adaptation and retention contribute to variety in a positive or negative sense. Methodologically, the thesis makes a contribution to our understanding of variety, as certain types of variety only become evident when examined by specific types of research design. The research also makes a theoretical contribution by explaining how selection, adaptation and retention individually and collectively contribute to variety in organisational routines. Moreover, showing that routines could be stable, diverse, adaptive and dynamic at the same time; is a significant, and novel, theoretical contribution.
Resumo:
Traditional analytic models for power system fault diagnosis are usually formulated as an unconstrained 0–1 integer programming problem. The key issue of the models is to seek the fault hypothesis that minimizes the discrepancy between the actual and the expected states of the concerned protective relays and circuit breakers. The temporal information of alarm messages has not been well utilized in these methods, and as a result, the diagnosis results may be not unique and hence indefinite, especially when complicated and multiple faults occur. In order to solve this problem, this paper presents a novel analytic model employing the temporal information of alarm messages along with the concept of related path. The temporal relationship among the actions of protective relays and circuit breakers, and the different protection configurations in a modern power system can be reasonably represented by the developed model, and therefore, the diagnosed results will be more definite under different circumstances of faults. Finally, an actual power system fault was served to verify the proposed method.
Resumo:
The Lockyer Valley in southeast Queensland, Australia, hosts an economically significant alluvial aquifer system which has been impacted by prolonged drought conditions (~1997 to ~ 2009). Throughout this time, the system was under continued groundwater extraction, resulting in severe aquifer depletion. By 2008, much of the aquifer was at <30% of storage but some relief occurred with rains in early 2009. However, between December 2010 and January 2011, most of southeast Queensland experienced unprecedented flooding, which generated significant aquifer recharge. In order to understand the spatial and temporal controls of groundwater recharge in the alluvium, a detailed 3D lithological property model of gravels, sands and clays was developed using GOCAD software. The spatial distribution of recharge throughout the catchment was assessed using hydrograph data from about 400 groundwater observation wells screened at the base of the alluvium. Water levels from these bores were integrated into a catchment-wide 3D geological model using the 3D geological modelling software GOCAD; the model highlights the complexity of recharge mechanisms. To support this analysis, groundwater tracers (e.g. major and minor ions, stable isotopes, 3H and 14C) were used as independent verification. The use of these complementary methods has allowed the identification of zones where alluvial recharge primarily occurs from stream water during episodic flood events. However, the study also demonstrates that in some sections of the alluvium, rainfall recharge and discharge from the underlying basement into the alluvium are the primary recharge mechanisms of the alluvium. This is indicated by the absence of any response to the flood, as well as the observed old radiocarbon ages and distinct basement water chemistry signatures at these locations. Within the 3D geological model, integration of water chemistry and time-series displays of water level surfaces before and after the flood suggests that the spatial variations of the flood response in the alluvium are primarily controlled by the valley morphology and lithological variations within the alluvium. The integration of time-series of groundwater level surfaces in the 3D geological model also enables the quantification of the volumetric change of groundwater stored in the unconfined sections of this alluvial aquifer during drought and following flood events. The 3D representation and analysis of hydraulic and recharge information has considerable advantages over the traditional 2D approach. For example, while many studies focus on singular aspects of catchment dynamics and groundwater-surface water interactions, the 3D approach is capable of integrating multiple types of information (topography, geological, hydraulic, water chemistry and spatial) into a single representation which provides valuable insights into the major factors controlling aquifer processes.
Resumo:
The overall objective of this thesis is to explore how and why the content of individuals' psychological contracts changes over time. The contract is generally understood as "individual beliefs, shaped by the organisation, regarding the terms of an exchange agreement between individuals and their organisation" (Rousseau, 1995, p. 9). With an overall study sampling frame of 320 graduate organisational newcomers, a mixed method longitudinal research design comprised of three sequential, inter-related studies is employed in order to capture the change process. From the 15 semi-structured interviews conducted in Study 1, the key findings included identifying a relatively high degree of mutuality between employees' and their managers' reciprocal contract beliefs around the time of organisational entry. Also, at this time, individuals had developed specific components of their contract content through a mix of social network information (regarding broader employment expectations) and perceptions of various elements of their particular organisation's reputation (for more firm-specific expectations). Study 2 utilised a four-wave survey approach (available to the full sampling frame) over the 14 months following organisational entry to explore the 'shape' of individuals' contract change trajectories and the role of four theorised change predictors in driving these trajectories. The predictors represented an organisational-level informational cue (perceptions of corporate reputation), a dyadic-level informational cue (perceptions of manager-employee relationship quality) and two individual difference variables (affect and hardiness). Through the use of individual growth modelling, the findings showed differences in the general change patterns across contract content components of perceived employer (exhibiting generally quadratic change patterns) and employee (exhibiting generally no-change patterns) obligations. Further, individuals differentially used the predictor variables to construct beliefs about specific contract content. While both organisational- and dyadic-level cues were focused upon to construct employer obligation beliefs, organisational-level cues and individual difference variables were focused upon to construct employee obligation beliefs. Through undertaking 26 semi-structured interviews, Study 3 focused upon gaining a richer understanding of why participants' contracts changed, or otherwise, over the study period, with a particular focus upon the roles of breach and violation. Breach refers to an employee's perception that an employer obligation has not been met and violation refers to the negative and affective employee reactions which may ensue following a breach. The main contribution of these findings was identifying that subsequent to a breach or violation event a range of 'remediation effects' could be activated by employees which, depending upon their effectiveness, served to instigate either breach or contract repair or both. These effects mostly instigated broader contract repair and were generally cognitive strategies enacted by an individual to re-evaluate the breach situation and re-focus upon other positive aspects of the employment relationship. As such, the findings offered new evidence for a clear distinction between remedial effects which serve to only repair the breach (and thus the contract) and effects which only repair the contract more broadly; however, when effective, both resulted in individuals again viewing their employment relationships positively. Overall, in response to the overarching research question of this thesis, how and why individuals' psychological contract beliefs change, individuals do indeed draw upon various information sources, particularly at the organisational-level, as cues or guides in shaping their contract content. Further, the 'shapes' of the changes in beliefs about employer and employee obligations generally follow different, and not necessarily linear, trajectories over time. Finally, both breach and violation and also remedial actions, which address these occurrences either by remedying the breach itself (and thus the contract) or the contract only, play central roles in guiding individuals' contract changes to greater or lesser degrees. The findings from the thesis provide both academics and practitioners with greater insights into how employees construct their contract beliefs over time, the salient informational cues used to do this and how the effects of breach and violation can be mitigated through creating an environment which facilitates the use of effective remediation strategies.
Resumo:
Crop simulation models have the potential to assess the risk associated with the selection of a specific N fertilizer rate, by integrating the effects of soil-crop interactions on crop growth under different pedo-climatic and management conditions. The objective of this study was to simulate the environmental and economic impact (nitrate leaching and N2O emissions) of a spatially variable N fertilizer application in an irrigated maize field in Italy. The validated SALUS model was run with 5 nitrogen rates scenarios, 50, 100, 150, 200, and 250 kg N ha−1, with the latter being the N fertilization adopted by the farmer. The long-term (25 years) simulations were performed on two previously identified spatially and temporally stable zones, a high yielding and low yielding zone. The simulation results showed that N fertilizer rate can be reduced without affecting yield and net return. The marginal net return was on average higher for the high yield zone, with values ranging from 1550 to 2650 € ha−1 for the 200 N and 1485 to 2875 € ha−1 for the 250 N. N leaching varied between 16.4 and 19.3 kg N ha−1 for the 200 N and the 250 N in the high yield zone. In the low yield zone, the 250 N had a significantly higher N leaching. N2O emissions varied between 0.28 kg N2O ha−1 for the 50 kg N ha−1 rate to a maximum of 1.41 kg N2O ha−1 for the 250 kg N ha−1 rate.
Resumo:
In this work, a Langevin dynamics model of the diffusion of water in articular cartilage was developed. Numerical simulations of the translational dynamics of water molecules and their interaction with collagen fibers were used to study the quantitative relationship between the organization of the collagen fiber network and the diffusion tensor of water in model cartilage. Langevin dynamics was used to simulate water diffusion in both ordered and partially disordered cartilage models. In addition, an analytical approach was developed to estimate the diffusion tensor for a network comprising a given distribution of fiber orientations. The key findings are that (1) an approximately linear relationship was observed between collagen volume fraction and the fractional anisotropy of the diffusion tensor in fiber networks of a given degree of alignment, (2) for any given fiber volume fraction, fractional anisotropy follows a fiber alignment dependency similar to the square of the second Legendre polynomial of cos(θ), with the minimum anisotropy occurring at approximately the magic angle (θMA), and (3) a decrease in the principal eigenvalue and an increase in the transverse eigenvalues is observed as the fiber orientation angle θ progresses from 0◦ to 90◦. The corresponding diffusion ellipsoids are prolate for θ < θMA, spherical for θ ≈ θMA, and oblate for θ > θMA. Expansion of the model to include discrimination between the combined effects of alignment disorder and collagen fiber volume fraction on the diffusion tensor is discussed.
Resumo:
Recently, a stream of project management research has recognized the critical role of boundary objects in the organization of projects. In this paper, we investigate how one advanced scheduling tool, the Integrated Master Schedule (IMS), is used as a temporal boundary object at various stages of complex projects. The IMS is critical to megaprojects which typically span long periods of time and face a high degree of complexity and uncertainty. In this paper, we conceptualize projects of this type as complex adaptive systems (CAS). We report the findings of four case projects on how the IMS mapped interactions, interdependencies, constraints, and fractal patterns of these emerging projects, and how the process of IMS visualization enabled communication and negotiation of project realities. This paper highlights that this advanced timeline tool acts as a boundary object and elicits shared understanding of complex projects from their stakeholders.