980 resultados para Structural transition
Resumo:
Systems composed of distinct operational modes are a common necessity for embedded applications with strict timing requirements. With the emergence of multi-core platforms protocols to handle these systems are required in order to provide this basic functionality.In this work a description on the problems of creating an effective mode-transition protocol are presented and it is proven that in some cases previous single-core protocols can not be extended to handle the mode-transition in multi-core.
Resumo:
Biophysical Chemistry 110 (2004) 83–92
Resumo:
We consider the global scheduling problem of multimode real-time systems upon identical multiprocessor platforms. During the execution of a multimode system, the system can change from one mode to another such that the current task set is replaced with a new task set. Thereby, ensuring that deadlines are met requires not only that a schedulability test is performed on tasks in each mode but also that (i) a protocol for transitioning from one mode to another is specified and (ii) a schedulability test for each transition is performed. In this paper, we extend the synchronous transition protocol SM-MSO in order to take into account mode-independent tasks [1], i.e., tasks of which the execution pattern must not be jeopardized by the mode changes.
Resumo:
FEBS Letters 579 (2005) 4585–4590
Resumo:
Background/Aims: Unconjugated bilirubin (UCB) impairs crucial aspects of cell function and induces apoptosis in primary cultured neurones. While mechanisms of cytotoxicity begin to unfold, mitochondria appear as potential primary targets. Methods: We used electron paramagnetic resonance spectroscopy analysis of isolated rat mitochondria to test the hypothesis that UCB physically interacts with mitochondria to induce structural membrane perturbation, leading to increased permeability, and subsequent release of apoptotic factors. Results: Our data demonstrate profound changes on mitochondrial membrane properties during incubation with UCB, including modified membrane lipid polarity and fluidity (P , 0:01), as well as disrupted protein mobility(P , 0:001). Consistent with increased permeability, cytochrome c was released from the intermembrane space(P , 0:01), perhaps uncoupling the respiratory chain and further increasing oxidative stress (P , 0:01). Both ursodeoxycholate, a mitochondrial-membrane stabilising agent, and cyclosporine A, an inhibitor of the permeability transition, almost completely abrogated UCB-induced perturbation. Conclusions: UCB directly interacts with mitochondria influencing membrane lipid and protein properties, redox status, and cytochrome c content. Thus, apoptosis induced by UCB may be mediated, at least in part, by physical perturbation of the mitochondrial membrane. These novel findings should ultimately prove useful to our evolving understanding of UCB cytotoxicity.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Bioquímica, ramo de Bioquímica-Física, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
This paper intends to evaluate the capacity of producing concrete with a pre-established performance (in terms of mechanical strength) incorporating recycled concrete aggregates (RCA) from different sources. To this purpose, rejected products from the precasting industry and concrete produced in laboratory were used. The appraisal of the self-replication capacity was made for three strength ranges: 15-25 MPa, 35-45 MPa and 65-75 MPa. The mixes produced tried to replicate the strength of the source concrete (SC) of the RA. Only total, (100%) replacement of coarse natural aggregates (CNA) by coarse recycled concrete aggregates (CRCA) was tested. The results show that, both in mechanical and durability terms, there were no significant differences between aggregates from controlled sources and those from precast rejects for the highest levels of the target strength. Furthermore, the performance losses resulting from the RA's incorporation are substantially reduced when used medium or high strength SC's. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Structural health monitoring has long been identified as a prominent application of Wireless Sensor Networks (WSNs), as traditional wired-based solutions present some inherent limitations such as installation/maintenance cost, scalability and visual impact. Nevertheless, there is a lack of ready-to-use and off-the-shelf WSN technologies that are able to fulfill some most demanding requirements of these applications, which can span from critical physical infrastructures (e.g. bridges, tunnels, mines, energy grid) to historical buildings or even industrial machinery and vehicles. Low-power and low-cost yet extremely sensitive and accurate accelerometer and signal acquisition hardware and stringent time synchronization of all sensors data are just examples of the requirements imposed by most of these applications. This paper presents a prototype system for health monitoring of civil engineering structures that has been jointly conceived by a team of civil, and electrical and computer engineers. It merges the benefits of standard and off-the-shelf (COTS) hardware and communication technologies with a minimum set of custom-designed signal acquisition hardware that is mandatory to fulfill all application requirements.
Resumo:
Dissertação apresentada para obtenção do grau de Doutor em Bioquímica, especialidade Bioquímica-Física, pela Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa
Resumo:
A series of mono(eta(5)-cyclopentadienyl)metal-(II) complexes with nitro-substituted thienyl acetylide ligands of general formula [M(eta(5)-C5H5)(L)(C C{C4H2S}(n)NO2)] (M = Fe, L = kappa(2)-DPPE, n = 1,2; M = Ru, L = kappa(2)-DPPE, 2 PPh3, n = 1, 2; M = Ni, L = PPh3, n = 1, 2) has been synthesized and fully characterized by NMR, FT-IR, and UV-Vis spectroscopy. The electrochemical behavior of the complexes was explored by cyclic voltammetry. Quadratic hyperpolarizabilities (beta) of the complexes have been determined by hyper-Rayleigh scattering (HRS) measurements at 1500 nm. The effect of donor abilities of different organometallic fragments on the quadratic hyperpolarizabilities was studied and correlated with spectroscopic and electrochemical data. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were employed to get a better understanding of the second-order nonlinear optical properties in these complexes. In this series, the complexity of the push pull systems is revealed; even so, several trends in the second-order hyperpolarizability can still be recognized. In particular, the overall data seem to indicate that the existence of other electronic transitions in addition to the main MLCT clearly controls the effectiveness of the organometallic donor ability on the second-order NLO properties of these push pull systems.
Resumo:
A swift chemical route to synthesize Co-doped SnO2 nanopowders is described. Pure and highly stable Sn1-xCoxO2-delta (0 <= x <= 0.15) crystalline nanoparticles were synthesized, with mean grain sizes <5 nm and the dopant element homogeneously distributed in the SnO2 matrix. The UV-visible diffuse reflectance spectra of the Sn1-xCoxO2-delta samples reveal red shifts, the optical bandgap energies decreasing with increasing Co concentration. The samples' Urbach energies were calculated and correlated with their bandgap energies. The photocatalytic activity of the Sn1-xCoxO2-delta samples was investigated for the 4-hydroxylbenzoic acid (4-HBA) degradation process. A complete photodegradation of a 10 ppm 4-HBA solution was achieved using 0.02% (w/w) of Sn0.95Co0.05O2-delta nanoparticles in 60 min of irradiation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The acetohydroxamic acid synthesis reaction was studied using whole cells, cell-free extract and purified amidase from the strains of Pseudomonas aeruginosa L10 and A13 entrapped in a reverse micelles system composed of cationic surfactant tetradecyltrimethyl ammonium bromide. The specific activity of amidase, yield of synthesis and storage stability were determined for the reversed micellar system as well as for free amidase in conventional buffer medium. The results have revealed that amidase solutions in the reverse micelles system exhibited a substantial increase in specific activity, yield of synthesis and storage stability. In fact, whole cells from P. aeruginosa L10 and AI3 in reverse micellar medium revealed an increase in specific activity of 9.3- and 13.9-fold, respectively, relatively to the buffer medium. Yields of approximately 92% and 66% of acetohydroxamic acid synthesis were obtained for encapsulated cell free extract from P. aeruginosa L10 and A13, respectively. On the other hand, the half-life values obtained for the amidase solutions encapsulated in reverse micelles were overall higher than that obtained for the free amidase solution in buffer medium. Half-life values obtained for encapsulated purified amidase from P. aeruginosa strain L10 and encapsulated cell-free extract from P. aeruginosa strain AI3 were of 17.0 and 26.0 days, respectively. As far as the different sources biocatalyst are concerned, the data presented in this work has revealed that the best results, in both storage stability and biocatalytic efficiency, were obtained when encapsulated cell-free extract from P. aeruginosa strain AI3 at 14/0 of 10 were used. Conformational changes occurring upon encapsulation of both strains enzymes in reverse micelles of TAB in heptane/octanol were additionally identified by FTIR spectroscopy which clarified the biocatalysts performances.
Resumo:
New cationic ruthenium(II) complexes with the formula [Ru(eta(5)-C5H5)(LL)(1-BuIm)] [Z], with (LL) = 2PPh(3) or DPPE, and Z = CF3SO3-, PF6-, BPh4-, have been synthesized and fully characterized. Spectroscopic and electrochemical studies revealed that the electronic properties of the coordinated 1-butylimidazole were clearly influenced by the nature of the phosphane coligands (LL) and also by the different counter ions. The solid state structures of the six complexes determined by X-ray crystallographic studies, confirmed the expected distorted three-legged piano stool structure. However the geometry of the 1-butylimidazole ligand was found considerably different in all six compounds, being governed by the stereochemistry of the mono and bidentate coligands (PPh3 or DPPE).
Resumo:
Titanate nanotubes (TNT) with different sodium contents have been synthesised using a hydrothermal approach and a swift and highly controllable post-washing processes. The influence of the sodium/proton replacement on the structural and morphological characteristics of the prepared materials was analysed. Different optical behaviour was observed depending on the Na+/H+ samples’ content. A band gap energy of 3.27±0.03 eV was estimated for the material with higher sodium content while a value of 2.81±0.02 eV was inferred for the most protonated material, which therefore exhibits an absorption edge in the near visible region. The point of zero charge of the materials was determined and the influence of the sodium content on the adsorption of both cationic and anionic organic dyes was studied. The photocatalytic performance of the TNT samples was evaluated in the rhodamine 6G degradation process. Best photodegradation results were obtained when using the most protonated material as catalyst, although this material has shown the lowest R6G adsorption capability.
Resumo:
We comment on the nature of the ordering transition of a model of equilibrium polydisperse rigid rods on the square lattice, which is reported by Lopez et al. to exhibit random percolation criticality in the canonical ensemble, in sharp contrast to (i) our results of Ising criticality for the same model in the grand canonical ensemble [Phys. Rev. E 82, 061117 (2010)] and (ii) the absence of exponent(s) renormalization for constrained systems with logarithmic specific-heat anomalies predicted on very general grounds by Fisher [Phys. Rev. 176, 257 (1968)].