998 resultados para Structural modifications


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Structural mutations (SMs) play a major role in cancer development. In some cancers, such as breast and ovarian, DNA double-strand breaks (DSBs) occur more frequently in transcribed regions, while in other cancer types such as prostate, there is a consistent depletion of breakpoints in transcribed regions. Despite such regularity, little is understood about the mechanisms driving these effects. A few works have suggested that protein binding may be relevant, e.g. in studies of androgen receptor binding and active chromatin in specific cell types. We hypothesized that this behavior might be general, i.e. that correlation between protein-DNA binding (and open chromatin) and breakpoint locations is common across divergent cancers. RESULTS: We investigated this hypothesis by comprehensively analyzing the relationship among 457 ENCODE protein binding ChIP-seq experiments, 125 DnaseI and 24 FAIRE experiments, and 14,600 SMs from 8 diverse cancer datasets covering 147 samples. In most cancers, including breast and ovarian, we found enrichment of protein binding and open chromatin in the vicinity of SM breakpoints at distances up to 200 kb. Furthermore, for all cancer types we observed an enhanced enrichment in regions distant from genes when compared to regions proximal to genes, suggesting that the SM-induction mechanism is independent from the bias of DSBs to occur near transcribed regions. We also observed a stronger effect for sites with more than one protein bound. CONCLUSIONS: Protein binding and open chromatin state are associated with nearby SM breakpoints in many cancer datasets. These observations suggest a consistent mechanism underlying SM locations across different cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural definition of the receptors for neurotropic and angiogenic modulators such as fibroblast growth factors and related polypeptides will yield insight into the mechanisms that control early development, embryogenesis, organogenesis, wound repair and neovessel formation. We isolated 3 murine cDNAs encoding different binding domains of these receptors (flg). Comparison of these ectoplasmic portions showed that two of the forms corresponded to previously described murine molecules whereas the third one had a different ectoplasmic portion generated by specific changes in two regions. Interestingly, expression of this third form seems to be restricted in its tissue distribution. Such modifications could influence the ligand specificity of the different receptors and/or their binding affinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Papez circuit is one of the major pathways of the limbic system, and it is involved in the control of memory and emotion. Structural and functional alterations have been reported in psychiatric, neurodegenerative, and epileptic diseases. Despite the clinical interest, however, in-vivo imaging of the entire circuit remains a technological challenge. We used magnetic resonance diffusion spectrum imaging to comprehensively picture the Papez circuit in healthy humans: (i) the hippocampus-mammillary body pathway, (ii) the connections between the lateral subiculum and the cingulate cortex, and (iii) the mammillo-thalamic tract. The diagnostic and therapeutic implications of these results are discussed in the context of recent findings reporting the involvement of the Papez circuit in neurological and psychiatric diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Apoptosis is known to play a key role in cell death after retinal ischemia. However, little is known about the kinetics of the signaling pathways involved and their contribution to this process. The aim of this study was to determine whether changes in the expression of molecules in the mitochondrial apoptotic pathway might explain the progression of retinal damage following ischemia/reperfusion. METHODS: Retinal ischemia was induced by elevating intraocular pressure in the vitreous cavity to 150 mmHg for a period of 60 min. At time 0, 3 h (early phase), and 24 h (late phase) after reperfusion, the retinas were harvested and modifications in the expression of Bax, Bak, Bcl-2, and Bcl-x(L) as well as caspase-3 and -7, were examined by qPCR and, in some cases, by western blot. RESULTS: qPCR analysis performed at the early phase after ischemia revealed a time dependent decrease in Bax, Bak, and Bcl-x(L) and no alteration in Bcl-2 mRNA expression in response to retinal ischemia. At the protein level, proapoptotic Bax and Bak were not modulated while Bcl-2 and Bcl-x(L) were significantly upregulated. At this stage, the Bax per Bcl-2 and Bax:Bcl-x(L) ratios were not modified. At the late phase of recovery, Bax and Bcl-x(L) mRNAs were downregulated while Bak was increased. Increased Bax:Bcl-2 and Bax:Bcl-x(L) ratios at both the mRNA and protein levels were observed 24 h after the ischemic insult. Analysis of caspases associated with mitochondria-mediated apoptosis revealed a specific increase in the expression of caspase-3 in the ischemic retinas 24 h after reperfusion, and a decrease in the expression of caspase-7. CONCLUSIONS: This study revealed that Bcl-2-related family members were differently regulated in the early and late phases after an ischemic insult. We showed that the Bax:Bcl-2 and Bax:Bcl-x(L) balances were not affected in the initial phases, but the Bax:Bcl-x(L) ratio shifted toward apoptosis during the late phase of recovery. This shift was reinforced by caspase-3 upregulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the relationship between time variations in output and inflation dynamics and monetary policy in the US. There are changes in the structural coefficients and in the variance of the structural shocks. The policy rules in the 1970s and 1990s are similar as is the transmission of policy disturbances. Inflation persistence is only partly a monetary phenomena. Variations in the systematic component of policy have limited effects on the dynamics of output and inflation. Results are robust to alterations in the auxiliary assumptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We performed whole genome sequencing in 16 unrelated patients with autosomal recessive retinitis pigmentosa (ARRP), a disease characterized by progressive retinal degeneration and caused by mutations in over 50 genes, in search of pathogenic DNA variants. Eight patients were from North America, whereas eight were Japanese, a population for which ARRP seems to have different genetic drivers. Using a specific workflow, we assessed both the coding and noncoding regions of the human genome, including the evaluation of highly polymorphic SNPs, structural and copy number variations, as well as 69 control genomes sequenced by the same procedures. We detected homozygous or compound heterozygous mutations in 7 genes associated with ARRP (USH2A, RDH12, CNGB1, EYS, PDE6B, DFNB31, and CERKL) in eight patients, three Japanese and five Americans. Fourteen of the 16 mutant alleles identified were previously unknown. Among these, there was a 2.3-kb deletion in USH2A and an inverted duplication of ∼446 kb in EYS, which would have likely escaped conventional screening techniques or exome sequencing. Moreover, in another Japanese patient, we identified a homozygous frameshift (p.L206fs), absent in more than 2,500 chromosomes from ethnically matched controls, in the ciliary gene NEK2, encoding a serine/threonine-protein kinase. Inactivation of this gene in zebrafish induced retinal photoreceptor defects that were rescued by human NEK2 mRNA. In addition to identifying a previously undescribed ARRP gene, our study highlights the importance of rare structural DNA variations in Mendelian diseases and advocates the need for screening approaches that transcend the analysis of the coding sequences of the human genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structurally segregated and functionally specialized regions of the human cerebral cortex are interconnected by a dense network of cortico-cortical axonal pathways. By using diffusion spectrum imaging, we noninvasively mapped these pathways within and across cortical hemispheres in individual human participants. An analysis of the resulting large-scale structural brain networks reveals a structural core within posterior medial and parietal cerebral cortex, as well as several distinct temporal and frontal modules. Brain regions within the structural core share high degree, strength, and betweenness centrality, and they constitute connector hubs that link all major structural modules. The structural core contains brain regions that form the posterior components of the human default network. Looking both within and outside of core regions, we observed a substantial correspondence between structural connectivity and resting-state functional connectivity measured in the same participants. The spatial and topological centrality of the core within cortex suggests an important role in functional integration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide robust examples of symmetric two-player coordination games in normal form that reveal that equilibrium selection by the evolutionary model of Young (1993) is essentially different from equilibrium selection by the evolutionary model of Kandori, Mailath and Rob (1993).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Load transfer across transverse joints has always been a factor contributing to the useful life of concrete pavements. For many years, round steel dowels have been the conventional load transfer mechanism. Many problems have been associated with the round steel dowels. The most detrimental effect of the steel dowel is corrosion. Repeated loading over time also damages joints. When a dowel is repeatedly loaded over a long period of time, the high bearing stresses found at the top and bottom edge of a bar erode the surrounding concrete. This oblonging creates multiple problems in the joint. Over the past decade, Iowa State University has performed extensive research on new dowel shapes and materials to mitigate the effects of oblonging and corrosion. This report evaluates the bearing stress performance of six different dowel bar types subjected to two different shear load laboratory test methods. The first load test is the AASHTO T253 method. The second procedure is an experimental cantilevered dowel test. The major objective was to investigate and improve the current AASHTO T253 test method for determining the modulus of dowel support, k0. The modified AASHTO test procedure was examined alongside an experimental cantilever dowel test. The modified AASHTO specimens were also subjected to a small-scale fatigue test in order to simulate long-term dowel behavior with respect to concrete joint damage. Loss on ignition tests were also performed on the GFRP dowel specimens to determine the resin content percentage. The study concluded that all of the tested dowel bar shapes and materials were adequate with respect to performance under shear loading. The modified AASHTO method yielded more desirable results than the ones obtained from the cantilever test. The investigators determined that the experimental cantilever test was not a satisfactory test method to replace or verify the AASHTO T253 method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensing the chemical warnings present in the environment is essential for species survival. In mammals, this form of danger communication occurs via the release of natural predator scents that can involuntarily warn the prey or by the production of alarm pheromones by the stressed prey alerting its conspecifics. Although we previously identified the olfactory Grueneberg ganglion as the sensory organ through which mammalian alarm pheromones signal a threatening situation, the chemical nature of these cues remains elusive. We here identify, through chemical analysis in combination with a series of physiological and behavioral tests, the chemical structure of a mouse alarm pheromone. To successfully recognize the volatile cues that signal danger, we based our selection on their activation of the mouse olfactory Grueneberg ganglion and the concomitant display of innate fear reactions. Interestingly, we found that the chemical structure of the identified mouse alarm pheromone has similar features as the sulfur-containing volatiles that are released by predating carnivores. Our findings thus not only reveal a chemical Leitmotiv that underlies signaling of fear, but also point to a double role for the olfactory Grueneberg ganglion in intraspecies as well as interspecies communication of danger.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical T cell cytokine macrophage migration inhibitory factor (MIF) has reemerged recently as a critical mediator of the host immune and stress response. MIF has been found to be a mediator of several diseases including gram-negative septic shock and delayed-type hypersensitivity reactions. Its immunological functions include the modulation of the host macrophage and T and B cell response. In contrast to other known cytokines, MIF production is induced rather than suppressed by glucocorticoids, and MIF has been found to override the immunosuppressive effects of glucocorticoids. Recently, elucidation of the three-dimensional structure of MIF revealed that MIF has a novel, unique cytokine structure. Here the biological role of MIF is reviewed in view of its distinct immunological and structural properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yosemite Valley poses significant rockfall hazard and related risk due to its glacially steepened walls and approximately 4 million visitors annually. To assess rockfall hazard, it is necessary to evaluate the geologic structure that contributes to the destabilization of rockfall sources and locate the most probable future source areas. Coupling new remote sensing techniques (Terrestrial Laser Scanning, Aerial Laser Scanning) and traditional field surveys, we investigated the regional geologic and structural setting, the orientation of the primary discontinuity sets for large areas of Yosemite Valley, and the specific discontinuity sets present at active rockfall sources. This information, combined with better understanding of the geologic processes that contribute to the progressive destabilization and triggering of granitic rock slabs, contributes to a more accurate rockfall susceptibility assessment for Yosemite Valley and elsewhere.