957 resultados para Stromal remodeling
Resumo:
Microwell platforms are frequently described for the efficient and uniform manufacture of 3-dimensional (3D) multicellular microtissues. Multiple partial or complete medium exchanges can displace microtissues from discrete microwells, and this can result in either the loss of microtissues from culture, or microtissue amalgamation when displaced microtissues fall into common microwells. Herein we describe the first microwell platform that incorporates a mesh to retain microtissues within discrete microwells; the microwell-mesh. We show that bonding a nylon mesh with an appropriate pore size over the microwell openings allows single cells to pass through the mesh into the microwells during the seeding process, but subsequently retains assembled microtissues within discrete microwells. To demonstrate the utility of this platform, we used the microwell-mesh to manufacture hundreds of cartilage microtissues, each formed from 5 × 10(3) bone marrow-derived mesenchymal stem/stromal cells (MSC). The microwell-mesh enabled reliable microtissue retention over 21-day cultures that included multiple full medium exchanges. Cartilage-like matrix formation was more rapid and homogeneous in microtissues than in conventional large diameter control cartilage pellets formed from 2 × 10(5) MSC each. The microwell-mesh platform offers an elegant mechanism to retain microtissues in microwells, and we believe that this improvement will make this platform useful in 3D culture protocols that require multiple medium exchanges, such as those that mimic specific developmental processes or complex sequential drug exposures.
Resumo:
We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions < 10 μm diameter; we termed this microscopic donor matrix "cartilage dust (CD)". Using a microwell platform, we show that ~0.83 μg CD can be rapidly and efficiently incorporated into single multicellular aggregates formed from 180 bone marrow mesenchymal stem/stromal cells (MSC) each. The microwell platform enabled the rapid manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression.
Resumo:
The size and arrangement of stromal collagen fibrils (CFs) influence the optical properties of the cornea and hence its function. The spatial arrangement of the collagen is still questionable in relation to the diameter of collagen fibril. In the present study, we introduce a new parameter, edge-fibrillar distance (EFD) to measure how two collagen fibrils are spaced with respect to their closest edges and their spatial distribution through normalized standard deviation of EFD (NSDEFD) accessed through the application of two commercially available multipurpose solutions (MPS): ReNu and Hippia. The corneal buttons were soaked separately in ReNu and Hippia MPS for five hours, fixed overnight in 2.5% glutaraldehyde containing cuprolinic blue and processed for transmission electron microscopy. The electron micrographs were processed using ImageJ user-coded plugin. Statistical analysis was performed to compare the image processed equivalent diameter (ED), inter-fibrillar distance (IFD), and EFD of the CFs of treated versus normal corneas. The ReNu-soaked cornea resulted in partly degenerated epithelium with loose hemidesmosomes and Bowman’s collagen. In contrast, the epithelium of the cornea soaked in Hippia was degenerated or lost but showed closely packed Bowman’s collagen. Soaking the corneas in both MPS caused a statistically significant decrease in the anterior collagen fibril, ED and a significant change in IFD, and EFD than those of the untreated corneas (p < 0.05, for all comparisons). The introduction of EFD measurement in the study directly provided a sense of gap between periphery of the collagen bundles, their spatial distribution; and in combination with ED, they showed how the corneal collagen bundles are spaced in relation to their diameters. The spatial distribution parameter NSDEFD indicated that ReNu treated cornea fibrils were uniformly distributed spatially, followed by normal and Hippia. The EFD measurement with relatively lower standard deviation and NSDEFD, a characteristic of uniform CFs distribution, can be an additional parameter used in evaluating collagen organization and accessing the effects of various treatments on corneal health and transparency.
Resumo:
Appropriate selection of scaffold architecture is a key challenge in cartilage tissue engineering. Gap junction-mediated intercellular contacts play important roles in precartilage condensation of mesenchymal cells. However, scaffold architecture could potentially restrict cell-cell communication and differentiation. This is particularly important when choosing the appropriate culture platform as well as scaffold-based strategy for clinical translation, that is, hydrogel or microtissues, for investigating differentiation of chondroprogenitor cells in cartilage tissue engineering. We, therefore, studied the influence of gap junction-mediated cell-cell communication on chondrogenesis of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and articular chondrocytes. Expanded human chondrocytes and BM-MSCs were either (re-) differentiated in micromass cell pellets or encapsulated as isolated cells in alginate hydrogels. Samples were treated with and without the gap junction inhibitor 18-α glycyrrhetinic acid (18αGCA). DNA and glycosaminoglycan (GAG) content and gene expression levels (collagen I/II/X, aggrecan, and connexin 43) were quantified at various time points. Protein localization was determined using immunofluorescence, and adenosine-5'-triphosphate (ATP) was measured in conditioned media. While GAG/DNA was higher in alginate compared with pellets for chondrocytes, there were no differences in chondrogenic gene expression between culture models. Gap junction blocking reduced collagen II and extracellular ATP in all chondrocyte cultures and in BM-MSC hydrogels. However, differentiation capacity was not abolished completely by 18αGCA. Connexin 43 levels were high throughout chondrocyte cultures and peaked only later during BM-MSC differentiation, consistent with the delayed response of BM-MSCs to 18αGCA. Alginate hydrogels and microtissues are equally suited culture platforms for the chondrogenic (re-)differentiation of expanded human articular chondrocytes and BM-MSCs. Therefore, reducing direct cell-cell contacts does not affect in vitro chondrogenesis. However, blocking gap junctions compromises cell differentiation, pointing to a prominent role for hemichannel function in this process. Therefore, scaffold design strategies that promote an increasing distance between single chondroprogenitor cells do not restrict their differentiation potential in tissue-engineered constructs.
Resumo:
To further investigate susceptibility loci identified by genome-wide association studies, we genotyped 5,500 SNPs across 14 associated regions in 8,000 samples from a control group and 3 diseases: type 2 diabetes (T2D), coronary artery disease (CAD) and Graves' disease. We defined, using Bayes theorem, credible sets of SNPs that were 95% likely, based on posterior probability, to contain the causal disease-associated SNPs. In 3 of the 14 regions, TCF7L2 (T2D), CTLA4 (Graves' disease) and CDKN2A-CDKN2B (T2D), much of the posterior probability rested on a single SNP, and, in 4 other regions (CDKN2A-CDKN2B (CAD) and CDKAL1, FTO and HHEX (T2D)), the 95% sets were small, thereby excluding most SNPs as potentially causal. Very few SNPs in our credible sets had annotated functions, illustrating the limitations in understanding the mechanisms underlying susceptibility to common diseases. Our results also show the value of more detailed mapping to target sequences for functional studies. © 2012 Nature America, Inc. All rights reserved.
Resumo:
Mammographic density (MD) is a strong risk factor for breast cancer. It is altered by exogenous endocrine treatments, including hormone replacement therapy and Tamoxifen. Such agents also modify breast cancer (BC) risk. However, the biomolecular basis of how systemic endocrine therapy modifies MD and MD-associated BC risk is poorly understood. This study aims to determine whether our xenograft biochamber model can be used to study the effectiveness of therapies aimed at modulating MD, by examine the effects of Tamoxifen and oestrogen on histologic and radiographic changes in high and low MD tissues maintained within the biochamber model. High and low MD human tissues were precisely sampled under radiographic guidance from prophylactic mastectomy fresh specimens of high-risk women, then inserted into separate vascularized murine biochambers. The murine hosts were concurrently implanted with Tamoxifen, oestrogen or placebo pellets, and the high and low MD biochamber tissues maintained in the murine host environment for 3 months, before the high and low MD biochamber tissues were harvested for histologic and radiographic analyses. The radiographic density of high MD tissue maintained in murine biochambers was decreased in Tamoxifen-treated mice compared to oestrogen-treated mice (p = 0.02). Tamoxifen treatment of high MD tissue in SCID mice led to a decrease in stromal (p = 0.009), and an increase in adipose (p = 0.023) percent areas, compared to placebo-treated mice. No histologic or radiographic differences were observed in low MD biochamber tissue with any treatment. High MD biochamber tissues maintained in mice implanted with Tamoxifen, oestrogen or placebo pellets had dynamic and measurable histologic compositional and radiographic changes. This further validates the dynamic nature of the MD xenograft model, and suggests the biochamber model may be useful for assessing the underlying molecular pathways of Tamoxifen-reduced MD, and in testing of other pharmacologic interventions in a preclinical model of high MD.
Resumo:
Background Matrix metalloproteinase-2 (MMP-2) is an endopeptidase that facilitates extracellular matrix remodeling and molecular regulation, and is implicated in tumor metastasis. Type I collagen (Col I) regulates the activation of MMP-2 through both transcriptional and post-transcriptional means; however gaps remain in our understanding of the involvement of collagen-binding ?1 integrins in collagen-stimulated MMP-2 activation. Methods Three ?1 integrin siRNAs were used to elucidate the involvement of ?1 integrins in the Col I-induced MMP-2 activation mechanism. ?1 integrin knockdown was analyzed by quantitative RT-PCR, Western Blot and FACS analysis. Adhesion assay and collagen gel contraction were used to test the biological effects of ?1 integrin abrogation. MMP-2 activation levels were monitored by gelatin zymography. Results All three ?1 integrin siRNAs were efficient at ?1 integrin knockdown and FACS analysis revealed commensurate reductions of integrins ?2 and ?3, which are heterodimeric partners of ?1, but not ?V, which is not. All three ?1 integrin siRNAs inhibited adhesion and collagen gel contraction, however only the siRNA showing the greatest magnitude of ?1 knockdown inhibited Col I-induced MMP-2 activation and reduced the accompanying upregulation of MT1-MMP, suggesting a dose response threshold effect. Re-transfection with codon-swapped ?1 integrin overcame the reduction in MMP-2 activation induced by Col-1, confirming the ?1 integrin target specificity. MMP-2 activation induced by TPA or Concanavalin A (Con A) was not inhibited by ?1 integrin siRNA knockdown. Conclusion Together, the data reveals that strong abrogation of ?1 integrin is required to block MMP-2 activation induced by Col I, which may have implications for the therapeutic targeting of ?1 integrin.
Resumo:
Summary Bisphosphonates can increase bone mineral density (BMD) in children with osteogenesis imperfecta (OI). In this study of adults with OI type I, risedronate increased BMD at lumbar spine (but not total hip) and decreased bone turnover. However, the fracture rate in these patients remained high. Introduction Intravenous bisphosphonates given to children with OI can increase BMD and reduce fracture incidence. Oral and/or intravenous bisphosphonates may have similar effects in adults with OI. We completed an observational study of the effect of risedronate in adults with OI type I. Methods Thirty-two adults (mean age, 39 years) with OI type I were treated with risedronate (total dose, 35 mg weekly) for 24 months. Primary outcome measures were BMD changes at lumbar spine (LS) and total hip (TH). Secondary outcome measures were fracture incidence, bone pain, and change in bone turnover markers (serum procollagen type I aminopropeptide (P1NP) and bone ALP). A meta-analysis of published studies of oral bisphosphonates in adults and children with OI was performed. Results Twenty-seven participants (ten males and seventeen females) completed the study. BMD increased at LS by 3.9% (0.815 vs. 0.846 g/cm 2, p=0.007; mean Z-score, -1.93 vs. -1.58, p=0.002), with no significant change at TH. P1NP fell by 37% (p=0.00041), with no significant change in bone ALP (p=0.15). Bone pain did not change significantly (p=0.6). Fracture incidence remained high, with 25 clinical fractures and 10 major fractures in fourteen participants (0.18 major fractures per person per year), with historical data of 0.12 fractures per person per year. The meta-analysis did not demonstrate a significant difference in fracture incidence in patients with OI treated with oral bisphosphonates. Conclusions Risedronate in adults with OI type I results in modest but significant increases in BMD at LS, and decreased bone turnover. However, this may be insufficient to make a clinically significant difference to fracture incidence.
Resumo:
Genetic factors are known to influence both the peak bone mass and probably the rate of change in bone density. A range of regulatory and structural genes has been proposed to be involved including collagen 1α1 (COL1A1), the estrogen receptor (ER), and the vitamin D receptor (VDR), but the actual genes involved are uncertain. We therefore studied the role of the COL1A1 and VDR loci in control of bone density by linkage in 45 dizygotic twin pairs and 29 nuclear families comprising 120 individuals. The influences on bone density of polymorphisms of COL1A1, VDR, and ER were studied by association both cross-sectionally and longitudinally in 193 elderly postmenopausal women (average age, 69 years) over a mean follow-up time of 6.3 years. Weak linkage of the COL1A1 locus with bone density was observed in both twins and families (p = 0.02 in both data sets), confirming previous observations of linkage of this locus with bone density. Association between the MscI polymorphism of COL1A1 and rate of lumbar spine bone loss was observed with significant gene-environment interaction related to dietary calcium intake (p = 0.0006). In the lowest tertile of dietary calcium intake, carriers of "s" alleles lost more bone than "SS" homozygotes (p = 0.01), whereas the opposite was observed in the highest dietary calcium intake (p = 0.003). Association also was observed between rate of bone loss at both the femoral neck and the lumbar spine and the TaqI VDR polymorphism (p = 0.03). This association was strongest in those in the lowest tertile of calcium intake, also suggesting the presence of gene-environment interaction involving dietary calcium and VDR, influencing bone turnover. No significant association was observed between the PvuII ER polymorphism alone or in combination with VDR or COL1A1 genotypes, with either bone density or its rate of change. These data support the involvement of COL1A1 in determination of bone density and the interaction of both COL1A1 and VDR with calcium intake in regulation of change of bone density over time.
Resumo:
Background: Autogenous vein grafting is widely used in regular bypassing procedures. Due to its mismatch with the host artery in both mechanical property and geometry, the graft often over expands under high arterial blood pressure and forms a step-depth where eddy flow develops, thus causing restenosis, fibrous graft wall, etc. External stents, such as sheaths being used to cuff the graft, have been introduced to eliminate these mismatches and increase the patency. Although histological and immunochemical studies have shown some positive effects of the external stent, the mechanical mismatch under the protection of an external stent remains poorly analyzed. Methods: In this study, the jugular veins taken from hypercholesterolemic rabbits were transplanted into the carotid arteries, and non-woven polyglycolic acid (PGA) fabric was used to fabricate the external stents to study the effect of the biodegradable external stent. Eight weeks after the operation, the grafts were harvested to perform mechanical tests and histological examinations. An arc tangent function was suggested to describe the relationship between pressure and cross-sectional area to analyse the compliance of the graft. Results: The results from the mechanical tests indicated that grafts either with or without external stents displayed large compliance in the low-pressure range and were almost inextensible in the high-pressure range. This was very different from the behavior of the arteries or veins in vivo. The data from histological tests showed that, with external stents, collagen fibers were more compact, whilst those in the graft without protection were looser and thicker. No elastic fiber was found in either kind of grafts. Furthermore, grafts without protection were over-expanded which resulted in much bigger cross-sectional areas. Conclusion: The PGA external extent contributes little to the reduction of the mechanical mismatch between the graft and its host artery while remodeling develops. For the geometric mismatch, it reduces the cross-section area, therefore matching with the host artery much better. Although there are some positive effects, conclusively the PGA is not an ideal material for external stent.
Resumo:
Suun kautta annosteltava kalsiumherkistäjä parantaa sydämen vajaatoimintaan liittyvää pumppausvajetta kokeellisissa sydämen vajaatoimintamalleissa Huolimatta viime vuosikymmenien lääketieteellisestä kehityksestä krooninen sydämen vajaatoiminta on silti edelleen vakava, elämänlaatua voimakkaasti rajoittava sairaus. Kalsiumherkistäjät ovat uusi, sydämen pumppausvoimaa lisäävä lääkeryhmä. Levosimendaani, kotimaista alkuperää oleva kalsiumherkistäjä, on kliinisessä käytössä akuutin vajaatoiminnan hoitoon suonensisäisesti ja lyhytaikaisesti annosteltavana valmisteena. Levosimendaanilla on aktiivinen metaboliitti, OR-1896, jonka oletetaan olevan vuorokauden mittaisen levosimendaani-infuusion jälkeen havaittujen useita päiviä kestävien hyödyllisisten vaikutuksisten takana. Levosimendaanin kroonisen, suun kautta tapahtuvan annostelun vaikutuksista tieto on vähäisempää, mutta sillä näyttää olevan positiivisia vaikutuksia potilaiden raportoimana. FM Marjut Louhelainen on selvittänyt väitöskirjassaan suun kautta annosteltavan levosimendaanin ja sen pitkäkestoisen aktiivisen metaboliitin vaikutuksia kroonisen vajaatoiminnan hoidossa käyttämällä sekä hypertensiivisen sydäntaudin että 2 tyypin diabeteksen komplisoimaan sydäninfarktin kokeellisia malleja. Tutkimuksessa selvitettiin lisäksi vajaatoimintaan johtavia molekyylitason tapahtumia sydänlihaksessa. Tutkimuksessa osoitettiin, että krooninen suun kautta annosteltu hoito sekä kalsiumherkistäjä levosimendaanilla että sen aktiivisella metaboliitilla estää hypertensiiviseen sydämen vajaatoiminnan aikaasaamaa sydämen uudelleenmuovaantumista ja siihen liittyvää kuolleisuutta. Nämä vaikutukset välittyivät vähentyneen sydänlihassoluhypertrofian, solukuolleisuuden ja neurohumaraalisen aktivaation kautta. Levosimendaanin ja OR-1896:n osoitettiin myös parantavan sydämen pumppausfunktiota tyyppi 2 diabeteksen komplisoimassa sydäninfarktissa. Ei-diabeettiseen tilanteeseen verrattuna diabetekseen liittyvä infarktin jälkeinen vajaatoiminnan kehitys oli yhteydessä lisääntyneeseen tulehdukseen, fibroosiin, solukuolemaan, neurohumoraaliseen aktivaatioon ja ennenaikaiseen kudoksen vanhenemiseen. Sekä levosimendaani, että OR-1869 vähensivät tulehduksen, fibroosin ja solukuoleman merkkejä ja vaimensi neurohumoraalista aktivaatiota. OR-1896 myös vähensi solujen vanhenemiseen liittyvien merkkiaineiden ilmentymistä. Väitöskirjassa todettiin, että suun kautta annosteltuna sekä levosimendaani, että sen aktiivinen metaboliitti OR-1896, omaavat terapeuttista potentiaalia sekä hypertensiivisen sydäntaudin hoitoon että sydäninfarktin jälkeisen vajaatoiminnan estoon. FM Marjut Louhelaisen farmakologian alaan kuuluva väitöskirja Effects of oral calcium sensitizers on experimental heart failure tarkastetaan Helsingin yliopiston Lääketieteellisessä tiedekunnassa perjantaina 29.01.2010 klo 12 (Biomedicum Helsinki, luentosali 2, Haartmaninkatu 8, Helsinki). Vastaväittäjänä toimii professori Raimo Tuominen, Helsingin yliopiston Farmasian tiedekunnasta ja kustoksena professori Eero Mervaala Helsingin yliopiston Lääketieteellisestä tiedekunnasta.
Resumo:
Atherosclerosis is a disease of the arteries; its characteristic features include chronic inflammation, extra- and intracellular lipid accumulation, extracellular matrix remodeling, and an increase in extracellular matrix volume. The underlying mechanisms in the pathogenesis of advanced atherosclerotic plaques, that involve local acidity of the extracellular fluid, are still incompletely understood. In this thesis project, my co-workers and I studied the different mechanisms by which local extracellular acidity could promote accumulation of the atherogenic apolipoprotein B-100 (apoB-100)-containing plasma lipoprotein particles in the inner layer of the arterial wall, the intima. We found that lipolysis of atherogenic apoB-100-containing plasma lipoprotein particles (LDL, IDL, and sVLDL) by the secretory phospholipase A2 group V (sPLA2-V) enzyme, was increased at acidic pH. Also, the binding of apoB-100-containing plasma lipoprotein particles to human aortic proteoglycans was dramatically enhanced at acidic pH. Additionally, lipolysis by sPLA2-V enzyme further increased this binding. Using proteoglycan-affinity chromatography, we found that sVLDL lipoprotein particles consist of populations, differing in their affinities toward proteoglycans. These populations also contained different amounts of apolipoprotein E (apoE) and apolipoprotein C-III (apoC-III); the amounts of apoC-III and apoE per particle were highest in the population with the lowest affinity toward proteoglycans. Since PLA2-modification of LDL particles has been shown to change their aggregation behavior, we also studied the effect of acidic pH on the monolayer structure covering lipoprotein particles after PLA2-induced hydrolysis. Using molecular dynamics simulations, we found that, in acidity, the monolayer is more tightly packed laterally; moreover, its spontaneous curvature is negative, suggesting that acidity may promote lipoprotein particles fusion. In addition to extracellular lipid accumulation, the apoB-100-containing plasma lipoprotein particles can be taken up by inflammatory cells, namely macrophages. Using radiolabeled lipoprotein particles and cell cultures, we showed that sPLA2-V-modification of LDL, IDL, and sVLDL lipoproteins particles, at neutral or acidic pH, increased their uptake by human monocyte-derived macrophages.
Resumo:
Total hip replacement is the golden standard treatment for severe osteoarthritis refractory for conservative treatment. Aseptic loosening and osteolysis are the major long-term complications after total hip replacement. Foreign body giant cells and osteoclasts are locally formed around aseptically loosening implants from precursor cells by cell fusion. When the foreign body response is fully developed, it mediates inflammatory and destructive host responses, such as collagen degradation. In the present study, it was hypothesized that the wear debris and foreign body inflammation are the forces driving local osteoclast formation, peri-implant bone resorption and enhanced tissue remodeling. Therefore the object was to characterize the eventual expression and the role of fusion molecules, ADAMs (an abbreviation for A Disintegrin And Metalloproteinase, ADAM9 and ADAM12) in the fusion of progenitor cells into multinuclear giant cells. For generation of such cells, activated macrophages trying to respond to foreign debris play an important role. Matured osteoclasts together with activated macrophages mediate bone destruction by secreting protons and proteinases, including matrix metalloproteinases (MMPs) and cathepsin K. Thus this study also assessed collagen degradation and its relationship to some of the key collagenolytic proteinases in the aggressive synovial membrane-like interface tissue around aseptically loosened hip replacement implants. ADAMs were found in the interface tissues of revision total hip replacement patients. Increased expression of ADAMs at both transcriptional and translational levels was found in synovial membrane-like interface tissue of revision total hip replacement (THR) samples compared with that in primary THR samples. These studies also demonstrate that multinucleate cell formation from monocytes by stimulation with macrophage-colony stimiulating factor (M-CSF) and receptor activator of nuclear factor kappa B ligand (RANKL) is characterized by time dependent changes of the proportion of ADAMs positive cells. This was observed both in the interface membrane in patients and in two different in vitro models. In addition to an already established MCS-F and RANKL driven model, a new virally (parainfluenza 2) driven model (of human salivary adenocarcinoma (HSY) cells or green monkey kidney (GMK) cells) was developed to study various fusion molecules and their role in cell fusion in general. In interface membranes, collagen was highly degraded and collagen degradation significantly correlated with the number of local cells containing collagenolytic enzymes, particularly cathepsin K. As a conclusion, fusion molecules ADAM9 and ADAM12 seem to be dynamically involved in cell-cell fusion processes and multinucleate cell formation. The highly significant correlation between collagen degradation and collagenolytic enzymes, particularly cathepsin K, indicates that the local acidity of the interface membrane in the pathologic bone and soft tissue destruction. This study provides profound knowledge about cell fusion and mechanism responsible for aseptic loosening as well as increases knowledge helpful for prevention and treatment.
Resumo:
Androgen receptor (AR) is necessary for normal male phenotype development and essential for spermatogenesis. AR is a classical steroid receptor mediating actions of male sex steroids testosterone and 5-alpha-dihydrotestosterone. Numerous coregulators interact with the receptor and regulate AR activity on target genes. This study deals with the characterization of androgen receptor-interacting protein 4 (ARIP4). ARIP4 binds DNA, interacts with AR in vitro and in cultured yeast and mammalian cells, and modulates AR-dependent transactivation. ARIP4 is an active DNA-dependent ATPase, and this enzymatic activity is essential for the ability of ARIP4 to modulate AR function. On the basis of sequence homology in its ATPase domain, ARIP4 belongs to the SNF2 family of proteins involved in chromatin remodeling, DNA repair, and homologous recombination. Similar to its closest homologs ATRX and Rad54, ARIP4 does not seem to be a classical chromatin remodeling protein in that it does not appear to form large protein complexes in vivo or remodel mononucleosomes in vitro. However, ARIP4 is able to generate superhelical torsion on linear DNA fragments. ARIP4 is covalently modified by SUMO-1, and mutation of six potential SUMO attachment sites abolishes the ability of ARIP4 to bind DNA, hydrolyze ATP, and activate AR function. ARIP4 expression starts in early embryonic development. In mouse embryo ARIP4 is present mainly in the neural tube and limb buds. In adult mouse tissues ARIP4 expression is virtually ubiquitous. In mouse testis ARIP4 is expressed in the nuclei of Sertoli cells in a stage-dependent manner. ARIP4 is also present in the nuclei of Leydig cells, spermatogonia, pachytene and diplotene spermatocytes. Testicular expression pattern of ARIP4 does not differ significantly in wild-type, FSHRKO, and LuRKO mice. In the testis of hpg mice, ARIP4 is found mainly in interstitial cells and has very low, if any, expression in Sertoli and germ cells. Heterozygous Arip4+/ mice are fertile and appear normal; however, they are haploinsufficient with regard to androgen action in Sertoli cells. In contrast, Arip4 / embryos are not viable. They have significantly reduced body size at E9.5 and die by E11.5. Compared to wild-type littermates, Arip4 / embryos possess a higher percentage of apoptotic cells at E9.5 and E10.5. Fibroblasts derived from Arip4 / embryos cease growing after 2-3 passages and exhibit a significantly increased apoptosis and decreased proliferation rate than cells from wild-type embryos. Our findings demonstrate that ARIP4 plays an essential role in mouse embryonic development. In addition, testicular expression and AR coregulatory activity of ARIP4 suggest a role of ARIP4-AR interaction in the somatic cells of the testis.
Resumo:
The repair of corneal wounds requires both epithelial cell adhesion and migration. Basement membrane (BM) and extracellular matrix (ECM) proteins function in these processes via integrin and non-integrin receptors. We have studied the adhesion, spreading and migration of immortalized human corneal epithelial (HCE) cells and their interactions with the laminins (Lms), fibronectins and tenascins produced. Human corneal BM expresses Lms-332 and -511, while Lm-111 was not found in these experiments. HCE cells produced both processed and unprocessed Lm-332, whereas neither Lm-111 nor Lm-511 was produced. Because HCE cells did not produce Lm-511, although it was present in corneal BM, we suggest that Lm-511 is produced by stromal keratocytes. The adhesion of HCE cells to Lms-111, -332 and -511 was studied first by determining the receptor composition of HCE cells and then by using quantitative cell adhesion assays. Immunofluorescence studies revealed the presence of integrin α2, α3, α6, β1 and β4 subunits. Among the non-integrin receptors, Lutheran (Lu) was found on adhering HCE cells. The cells adhered via integrin α3β1 to both purified human Lms-332 and -511 as well as to endogenous Lm-332. However, only integrin β1 subunit functioned in HCE cell adhesion to mouse Lm-111. The adhesion of HCE cells to Lm-511 was also mediated by Lu. Since Lm-511 did not induce Lu into focal adhesions in HCE cells, we suggest that Lm-511 serves as an ECM ligand enabling cell motility. HCE cells produced extradomain-A fibronectin, oncofetal fibronectin and tenascin-C (Tn-C), which are also found during corneal wound healing. Monoclonal antibodies (MAbs) against integrins α5β1 and αvβ6 as well as the arginine-glycine-aspartic acid (RGD) peptide inhibited the adhesion of HCE cells to fibronectin. Although the cells did not adhere to Tn-C, they adhered to the fibronectin/Tn-C coat and were then more efficiently inhibited by the function-blocking MAbs and RGD peptide. During the early adhesion, HCE cells codeposited Lm-332 and the large subunit of tenascin-C (Tn-CL) beneath the cells via the Golgi apparatus and microtubules. Integrin β4 subunit, which is a hemidesmosomal component, did not mediate the early adhesion of HCE cells to Lm-332 or Lm-332/Tn-C. Based on these results, we suggest that the adhesion of HCE cells is initiated by Lm-332 and modulated by Tn-CL, as it has been reported to prevent the assembly of hemidesmosomes. Thereby, Tn-CL functions in the motility of HCE cells during wound healing. The different distribution of processed and unprocessed Lm-332 in adhering, spreading and migrating HCE cells suggests a distinct role for these isoforms. We conclude that the processed Lm-332 functions in cell adhesion, whereas the unprocessed Lm-332 participates in cell spreading and migration.