954 resultados para Stochastic Differential Equations, Parameter Estimation, Maximum Likelihood, Simulation, Moments
Resumo:
A field of computational neuroscience develops mathematical models to describe neuronal systems. The aim is to better understand the nervous system. Historically, the integrate-and-fire model, developed by Lapique in 1907, was the first model describing a neuron. In 1952 Hodgkin and Huxley [8] described the so called Hodgkin-Huxley model in the article “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve”. The Hodgkin-Huxley model is one of the most successful and widely-used biological neuron models. Based on experimental data from the squid giant axon, Hodgkin and Huxley developed their mathematical model as a four-dimensional system of first-order ordinary differential equations. One of these equations characterizes the membrane potential as a process in time, whereas the other three equations depict the opening and closing state of sodium and potassium ion channels. The membrane potential is proportional to the sum of ionic current flowing across the membrane and an externally applied current. For various types of external input the membrane potential behaves differently. This thesis considers the following three types of input: (i) Rinzel and Miller [15] calculated an interval of amplitudes for a constant applied current, where the membrane potential is repetitively spiking; (ii) Aihara, Matsumoto and Ikegaya [1] said that dependent on the amplitude and the frequency of a periodic applied current the membrane potential responds periodically; (iii) Izhikevich [12] stated that brief pulses of positive and negative current with different amplitudes and frequencies can lead to a periodic response of the membrane potential. In chapter 1 the Hodgkin-Huxley model is introduced according to Izhikevich [12]. Besides the definition of the model, several biological and physiological notes are made, and further concepts are described by examples. Moreover, the numerical methods to solve the equations of the Hodgkin-Huxley model are presented which were used for the computer simulations in chapter 2 and chapter 3. In chapter 2 the statements for the three different inputs (i), (ii) and (iii) will be verified, and periodic behavior for the inputs (ii) and (iii) will be investigated. In chapter 3 the inputs are embedded in an Ornstein-Uhlenbeck process to see the influence of noise on the results of chapter 2.
Resumo:
Zusammenfassung In der vorliegenden Arbeit besch¨aftige ich mich mit Differentialgleichungen von Feynman– Integralen. Ein Feynman–Integral h¨angt von einem Dimensionsparameter D ab und kann f¨ur ganzzahlige Dimension als projektives Integral dargestellt werden. Dies ist die sogenannte Feynman–Parameter Darstellung. In Abh¨angigkeit der Dimension kann ein solches Integral divergieren. Als Funktion in D erh¨alt man eine meromorphe Funktion auf ganz C. Ein divergentes Integral kann also durch eine Laurent–Reihe ersetzt werden und dessen Koeffizienten r¨ucken in das Zentrum des Interesses. Diese Vorgehensweise wird als dimensionale Regularisierung bezeichnet. Alle Terme einer solchen Laurent–Reihe eines Feynman–Integrals sind Perioden im Sinne von Kontsevich und Zagier. Ich beschreibe eine neue Methode zur Berechnung von Differentialgleichungen von Feynman– Integralen. ¨ Ublicherweise verwendet man hierzu die sogenannten ”integration by parts” (IBP)– Identit¨aten. Die neue Methode verwendet die Theorie der Picard–Fuchs–Differentialgleichungen. Im Falle projektiver oder quasi–projektiver Variet¨aten basiert die Berechnung einer solchen Differentialgleichung auf der sogenannten Griffiths–Dwork–Reduktion. Zun¨achst beschreibe ich die Methode f¨ur feste, ganzzahlige Dimension. Nach geeigneter Verschiebung der Dimension erh¨alt man direkt eine Periode und somit eine Picard–Fuchs–Differentialgleichung. Diese ist inhomogen, da das Integrationsgebiet einen Rand besitzt und daher nur einen relativen Zykel darstellt. Mit Hilfe von dimensionalen Rekurrenzrelationen, die auf Tarasov zur¨uckgehen, kann in einem zweiten Schritt die L¨osung in der urspr¨unglichen Dimension bestimmt werden. Ich beschreibe außerdem eine Methode, die auf der Griffiths–Dwork–Reduktion basiert, um die Differentialgleichung direkt f¨ur beliebige Dimension zu berechnen. Diese Methode ist allgemein g¨ultig und erspart Dimensionswechsel. Ein Erfolg der Methode h¨angt von der M¨oglichkeit ab, große Systeme von linearen Gleichungen zu l¨osen. Ich gebe Beispiele von Integralen von Graphen mit zwei und drei Schleifen. Tarasov gibt eine Basis von Integralen an, die Graphen mit zwei Schleifen und zwei externen Kanten bestimmen. Ich bestimme Differentialgleichungen der Integrale dieser Basis. Als wichtigstes Beispiel berechne ich die Differentialgleichung des sogenannten Sunrise–Graphen mit zwei Schleifen im allgemeinen Fall beliebiger Massen. Diese ist f¨ur spezielle Werte von D eine inhomogene Picard–Fuchs–Gleichung einer Familie elliptischer Kurven. Der Sunrise–Graph ist besonders interessant, weil eine analytische L¨osung erst mit dieser Methode gefunden werden konnte, und weil dies der einfachste Graph ist, dessen Master–Integrale nicht durch Polylogarithmen gegeben sind. Ich gebe außerdem ein Beispiel eines Graphen mit drei Schleifen. Hier taucht die Picard–Fuchs–Gleichung einer Familie von K3–Fl¨achen auf.
Resumo:
Smoothing splines are a popular approach for non-parametric regression problems. We use periodic smoothing splines to fit a periodic signal plus noise model to data for which we assume there are underlying circadian patterns. In the smoothing spline methodology, choosing an appropriate smoothness parameter is an important step in practice. In this paper, we draw a connection between smoothing splines and REACT estimators that provides motivation for the creation of criteria for choosing the smoothness parameter. The new criteria are compared to three existing methods, namely cross-validation, generalized cross-validation, and generalization of maximum likelihood criteria, by a Monte Carlo simulation and by an application to the study of circadian patterns. For most of the situations presented in the simulations, including the practical example, the new criteria out-perform the three existing criteria.
Resumo:
We investigate the interplay of smoothness and monotonicity assumptions when estimating a density from a sample of observations. The nonparametric maximum likelihood estimator of a decreasing density on the positive half line attains a rate of convergence at a fixed point if the density has a negative derivative. The same rate is obtained by a kernel estimator, but the limit distributions are different. If the density is both differentiable and known to be monotone, then a third estimator is obtained by isotonization of a kernel estimator. We show that this again attains the rate of convergence and compare the limit distributors of the three types of estimators. It is shown that both isotonization and smoothing lead to a more concentrated limit distribution and we study the dependence on the proportionality constant in the bandwidth. We also show that isotonization does not change the limit behavior of a kernel estimator with a larger bandwidth, in the case that the density is known to have more than one derivative.
Resumo:
This paper discusses estimation of the tumor incidence rate, the death rate given tumor is present and the death rate given tumor is absent using a discrete multistage model. The model was originally proposed by Dewanji and Kalbfleisch (1986) and the maximum likelihood estimate of the tumor incidence rate was obtained using EM algorithm. In this paper, we use a reparametrization to simplify the estimation procedure. The resulting estimates are not always the same as the maximum likelihood estimates but are asymptotically equivalent. In addition, an explicit expression for asymptotic variance and bias of the proposed estimators is also derived. These results can be used to compare efficiency of different sacrifice schemes in carcinogenicity experiments.
Resumo:
The degree of polarization of a refected field from active laser illumination can be used for object identifcation and classifcation. The goal of this study is to investigate methods for estimating the degree of polarization for refected fields with active laser illumination, which involves the measurement and processing of two orthogonal field components (complex amplitudes), two orthogonal intensity components, and the total field intensity. We propose to replace interferometric optical apparatuses with a computational approach for estimating the degree of polarization from two orthogonal intensity data and total intensity data. Cramer-Rao bounds for each of the three sensing modalities with various noise models are computed. Algebraic estimators and maximum-likelihood (ML) estimators are proposed. Active-set algorithm and expectation-maximization (EM) algorithm are used to compute ML estimates. The performances of the estimators are compared with each other and with their corresponding Cramer-Rao bounds. Estimators for four-channel polarimeter (intensity interferometer) sensing have a better performance than orthogonal intensities estimators and total intensity estimators. Processing the four intensities data from polarimeter, however, requires complicated optical devices, alignment, and four CCD detectors. It only requires one or two detectors and a computer to process orthogonal intensities data and total intensity data, and the bounds and estimator performances demonstrate that reasonable estimates may still be obtained from orthogonal intensities or total intensity data. Computational sensing is a promising way to estimate the degree of polarization.
Resumo:
Electrical Power Assisted Steering system (EPAS) will likely be used on future automotive power steering systems. The sinusoidal brushless DC (BLDC) motor has been identified as one of the most suitable actuators for the EPAS application. Motor characteristic variations, which can be indicated by variations of the motor parameters such as the coil resistance and the torque constant, directly impart inaccuracies in the control scheme based on the nominal values of parameters and thus the whole system performance suffers. The motor controller must address the time-varying motor characteristics problem and maintain the performance in its long service life. In this dissertation, four adaptive control algorithms for brushless DC (BLDC) motors are explored. The first algorithm engages a simplified inverse dq-coordinate dynamics controller and solves for the parameter errors with the q-axis current (iq) feedback from several past sampling steps. The controller parameter values are updated by slow integration of the parameter errors. Improvement such as dynamic approximation, speed approximation and Gram-Schmidt orthonormalization are discussed for better estimation performance. The second algorithm is proposed to use both the d-axis current (id) and the q-axis current (iq) feedback for parameter estimation since id always accompanies iq. Stochastic conditions for unbiased estimation are shown through Monte Carlo simulations. Study of the first two adaptive algorithms indicates that the parameter estimation performance can be achieved by using more history data. The Extended Kalman Filter (EKF), a representative recursive estimation algorithm, is then investigated for the BLDC motor application. Simulation results validated the superior estimation performance with the EKF. However, the computation complexity and stability may be barriers for practical implementation of the EKF. The fourth algorithm is a model reference adaptive control (MRAC) that utilizes the desired motor characteristics as a reference model. Its stability is guaranteed by Lyapunov’s direct method. Simulation shows superior performance in terms of the convergence speed and current tracking. These algorithms are compared in closed loop simulation with an EPAS model and a motor speed control application. The MRAC is identified as the most promising candidate controller because of its combination of superior performance and low computational complexity. A BLDC motor controller developed with the dq-coordinate model cannot be implemented without several supplemental functions such as the coordinate transformation and a DC-to-AC current encoding scheme. A quasi-physical BLDC motor model is developed to study the practical implementation issues of the dq-coordinate control strategy, such as the initialization and rotor angle transducer resolution. This model can also be beneficial during first stage development in automotive BLDC motor applications.
Resumo:
This paper introduces and analyzes a stochastic search method for parameter estimation in linear regression models in the spirit of Beran and Millar [Ann. Statist. 15(3) (1987) 1131–1154]. The idea is to generate a random finite subset of a parameter space which will automatically contain points which are very close to an unknown true parameter. The motivation for this procedure comes from recent work of Dümbgen et al. [Ann. Statist. 39(2) (2011) 702–730] on regression models with log-concave error distributions.
Resumo:
The distribution of the number of heterozygous loci in two randomly chosen gametes or in a random diploid zygote provides information regarding the nonrandom association of alleles among different genetic loci. Two alternative statistics may be employed for detection of nonrandom association of genes of different loci when observations are made on these distributions: observed variance of the number of heterozygous loci (s2k) and a goodness-of-fit criterion (X2) to contrast the observed distribution with that expected under the hypothesis of random association of genes. It is shown, by simulation, that s2k is statistically more efficient than X2 to detect a given extent of nonrandom association. Asymptotic normality of s2k is justified, and X2 is shown to follow a chi-square (chi 2) distribution with partial loss of degrees of freedom arising because of estimation of parameters from the marginal gene frequency data. Whenever direct evaluations of linkage disequilibrium values are possible, tests based on maximum likelihood estimators of linkage disequilibria require a smaller sample size (number of zygotes or gametes) to detect a given level of nonrandom association in comparison with that required if such tests are conducted on the basis of s2k. Summarization of multilocus genotype (or haplotype) data, into the different number of heterozygous loci classes, thus, amounts to appreciable loss of information.
Resumo:
Variable number of tandem repeats (VNTR) are genetic loci at which short sequence motifs are found repeated different numbers of times among chromosomes. To explore the potential utility of VNTR loci in evolutionary studies, I have conducted a series of studies to address the following questions: (1) What are the population genetic properties of these loci? (2) What are the mutational mechanisms of repeat number change at these loci? (3) Can DNA profiles be used to measure the relatedness between a pair of individuals? (4) Can DNA fingerprint be used to measure the relatedness between populations in evolutionary studies? (5) Can microsatellite and short tandem repeat (STR) loci which mutate stepwisely be used in evolutionary analyses?^ A large number of VNTR loci typed in many populations were studied by means of statistical methods developed recently. The results of this work indicate that there is no significant departure from Hardy-Weinberg expectation (HWE) at VNTR loci in most of the human populations examined, and the departure from HWE in some VNTR loci are not solely caused by the presence of population sub-structure.^ A statistical procedure is developed to investigate the mutational mechanisms of VNTR loci by studying the allele frequency distributions of these loci. Comparisons of frequency distribution data on several hundreds VNTR loci with the predictions of two mutation models demonstrated that there are differences among VNTR loci grouped by repeat unit sizes.^ By extending the ITO method, I derived the distribution of the number of shared bands between individuals with any kinship relationship. A maximum likelihood estimation procedure is proposed to estimate the relatedness between individuals from the observed number of shared bands between them.^ It was believed that classical measures of genetic distance are not applicable to analysis of DNA fingerprints which reveal many minisatellite loci simultaneously in the genome, because the information regarding underlying alleles and loci is not available. I proposed a new measure of genetic distance based on band sharing between individuals that is applicable to DNA fingerprint data.^ To address the concern that microsatellite and STR loci may not be useful for evolutionary studies because of the convergent nature of their mutation mechanisms, by a theoretical study as well as by computer simulation, I conclude that the possible bias caused by the convergent mutations can be corrected, and a novel measure of genetic distance that makes the correction is suggested. In summary, I conclude that hypervariable VNTR loci are useful in evolutionary studies of closely related populations or species, especially in the study of human evolution and the history of geographic dispersal of Homo sapiens. (Abstract shortened by UMI.) ^
Resumo:
(1) A mathematical theory for computing the probabilities of various nucleotide configurations is developed, and the probability of obtaining the correct phylogenetic tree (model tree) from sequence data is evaluated for six phylogenetic tree-making methods (UPGMA, distance Wagner method, transformed distance method, Fitch-Margoliash's method, maximum parsimony method, and compatibility method). The number of nucleotides (m*) necessary to obtain the correct tree with a probability of 95% is estimated with special reference to the human, chimpanzee, and gorilla divergence. m* is at least 4,200, but the availability of outgroup species greatly reduces m* for all methods except UPGMA. m* increases if transitions occur more frequently than transversions as in the case of mitochondrial DNA. (2) A new tree-making method called the neighbor-joining method is proposed. This method is applicable either for distance data or character state data. Computer simulation has shown that the neighbor-joining method is generally better than UPGMA, Farris' method, Li's method, and modified Farris method on recovering the true topology when distance data are used. A related method, the simultaneous partitioning method, is also discussed. (3) The maximum likelihood (ML) method for phylogeny reconstruction under the assumption of both constant and varying evolutionary rates is studied, and a new algorithm for obtaining the ML tree is presented. This method gives a tree similar to that obtained by UPGMA when constant evolutionary rate is assumed, whereas it gives a tree similar to that obtained by the maximum parsimony tree and the neighbor-joining method when varying evolutionary rate is assumed. ^
Resumo:
Introduction: According to the ecological view, coordination establishes byvirtueof social context. Affordances thought of as situational opportunities to interact are assumed to represent the guiding principles underlying decisions involved in interpersonal coordination. It’s generally agreed that affordances are not an objective part of the (social) environment but that they depend on the constructive perception of involved subjects. Theory and empirical data hold that cognitive operations enabling domain-specific efficacy beliefs are involved in the perception of affordances. The aim of the present study was to test the effects of these cognitive concepts in the subjective construction of local affordances and their influence on decision making in football. Methods: 71 football players (M = 24.3 years, SD = 3.3, 21 % women) from different divisions participated in the study. Participants were presented scenarios of offensive game situations. They were asked to take the perspective of the person on the ball and to indicate where they would pass the ball from within each situation. The participants stated their decisions in two conditions with different game score (1:0 vs. 0:1). The playing fields of all scenarios were then divided into ten zones. For each zone, participants were asked to rate their confidence in being able to pass the ball there (self-efficacy), the likelihood of the group staying in ball possession if the ball were passed into the zone (group-efficacy I), the likelihood of the ball being covered safely by a team member (pass control / group-efficacy II), and whether a pass would establish a better initial position to attack the opponents’ goal (offensive convenience). Answers were reported on visual analog scales ranging from 1 to 10. Data were analyzed specifying general linear models for binomially distributed data (Mplus). Maximum likelihood with non-normality robust standard errors was chosen to estimate parameters. Results: Analyses showed that zone- and domain-specific efficacy beliefs significantly affected passing decisions. Because of collinearity with self-efficacy and group-efficacy I, group-efficacy II was excluded from the models to ease interpretation of the results. Generally, zones with high values in the subjective ratings had a higher probability to be chosen as passing destination (βself-efficacy = 0.133, p < .001, OR = 1.142; βgroup-efficacy I = 0.128, p < .001, OR = 1.137; βoffensive convenience = 0.057, p < .01, OR = 1.059). There were, however, characteristic differences in the two score conditions. While group-efficacy I was the only significant predictor in condition 1 (βgroup-efficacy I = 0.379, p < .001), only self-efficacy and offensive convenience contributed to passing decisions in condition 2 (βself-efficacy = 0.135, p < .01; βoffensive convenience = 0.120, p < .001). Discussion: The results indicate that subjectively distinct attributes projected to playfield zones affect passing decisions. The study proposes a probabilistic alternative to Lewin’s (1951) hodological and deterministic field theory and enables insight into how dimensions of the psychological landscape afford passing behavior. Being part of a team, this psychological landscape is not only constituted by probabilities that refer to the potential and consequences of individual behavior, but also to that of the group system of which individuals are part of. Hence, in regulating action decisions in group settings, informers are extended to aspects referring to the group-level. References: Lewin, K. (1951). In D. Cartwright (Ed.), Field theory in social sciences: Selected theoretical papers by Kurt Lewin. New York: Harper & Brothers.
Resumo:
Analysis of recurrent events has been widely discussed in medical, health services, insurance, and engineering areas in recent years. This research proposes to use a nonhomogeneous Yule process with the proportional intensity assumption to model the hazard function on recurrent events data and the associated risk factors. This method assumes that repeated events occur for each individual, with given covariates, according to a nonhomogeneous Yule process with intensity function λx(t) = λ 0(t) · exp( x′β). One of the advantages of using a non-homogeneous Yule process for recurrent events is that it assumes that the recurrent rate is proportional to the number of events that occur up to time t. Maximum likelihood estimation is used to provide estimates of the parameters in the model, and a generalized scoring iterative procedure is applied in numerical computation. ^ Model comparisons between the proposed method and other existing recurrent models are addressed by simulation. One example concerning recurrent myocardial infarction events compared between two distinct populations, Mexican-American and Non-Hispanic Whites in the Corpus Christi Heart Project is examined. ^
Resumo:
Ordinal outcomes are frequently employed in diagnosis and clinical trials. Clinical trials of Alzheimer's disease (AD) treatments are a case in point using the status of mild, moderate or severe disease as outcome measures. As in many other outcome oriented studies, the disease status may be misclassified. This study estimates the extent of misclassification in an ordinal outcome such as disease status. Also, this study estimates the extent of misclassification of a predictor variable such as genotype status. An ordinal logistic regression model is commonly used to model the relationship between disease status, the effect of treatment, and other predictive factors. A simulation study was done. First, data based on a set of hypothetical parameters and hypothetical rates of misclassification was created. Next, the maximum likelihood method was employed to generate likelihood equations accounting for misclassification. The Nelder-Mead Simplex method was used to solve for the misclassification and model parameters. Finally, this method was applied to an AD dataset to detect the amount of misclassification present. The estimates of the ordinal regression model parameters were close to the hypothetical parameters. β1 was hypothesized at 0.50 and the mean estimate was 0.488, β2 was hypothesized at 0.04 and the mean of the estimates was 0.04. Although the estimates for the rates of misclassification of X1 were not as close as β1 and β2, they validate this method. X 1 0-1 misclassification was hypothesized as 2.98% and the mean of the simulated estimates was 1.54% and, in the best case, the misclassification of k from high to medium was hypothesized at 4.87% and had a sample mean of 3.62%. In the AD dataset, the estimate for the odds ratio of X 1 of having both copies of the APOE 4 allele changed from an estimate of 1.377 to an estimate 1.418, demonstrating that the estimates of the odds ratio changed when the analysis includes adjustment for misclassification. ^
Resumo:
A Bayesian approach to estimating the intraclass correlation coefficient was used for this research project. The background of the intraclass correlation coefficient, a summary of its standard estimators, and a review of basic Bayesian terminology and methodology were presented. The conditional posterior density of the intraclass correlation coefficient was then derived and estimation procedures related to this derivation were shown in detail. Three examples of applications of the conditional posterior density to specific data sets were also included. Two sets of simulation experiments were performed to compare the mean and mode of the conditional posterior density of the intraclass correlation coefficient to more traditional estimators. Non-Bayesian methods of estimation used were: the methods of analysis of variance and maximum likelihood for balanced data; and the methods of MIVQUE (Minimum Variance Quadratic Unbiased Estimation) and maximum likelihood for unbalanced data. The overall conclusion of this research project was that Bayesian estimates of the intraclass correlation coefficient can be appropriate, useful and practical alternatives to traditional methods of estimation. ^