900 resultados para Solid state reactions
Resumo:
The combustion technique produces ionically dispersed Ag on a nano-crystalline CeO2 surface. The catalysts thus produced were characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. Catalytic properties towards NO reduction, CO and hydrocarbon oxidation have been investigated using the temperature programmed reaction technique in a packed bed tubular reactor. These results are compared with alpha-Al2O3 supported finely divided Ag metal particles synthesized by the same method. Both oxidation and reduction reactions over Ag/CeO2 have been observed to occur at lower temperatures compared to Ag/Al2O3. The rate and turnover frequency of the NO+CO reaction over 1% Ag/CeO2 are 56.3 mu mol g(-1) s(-1) and 0.97 s(-1) at 225 degrees C respectively. Activation energy (E-a) values are 71 and 67 kJ mol(-1) for CO+O-2 and NO+CO reactions, respectively, over 1% Ag/CeO2 catalyst.
Resumo:
A completely automated temperature-programmed reaction (TPR) system for carrying out gas-solid catalytic reactions under atmospheric flow conditions is fabricated to study CO and hydrocarbon oxidation, and NO reduction. The system consists of an all-stainless steel UHV system, quadrupole mass spectrometer SX200 (VG Scientific), a tubular furnace and micro-reactor, a temperature controller, a versatile gas handling system, and a data acquisition and analysis system. The performance of the system has been tested under standard experimental conditions for CO oxidation over well-characterized Ce1-x-y(La/Y)(y)O2-delta catalysts. Testing of 3-way catalysis with CO, NO and C2H2 to convert to CO2, N-2 and H2O is done with this catalyst which shows complete removal of pollutants below 325 degrees C. Fixed oxide-ion defects in Pt substituted Ce1-y(La/Y)(y)O2-y/2 show higher catalytic activity than Pt ion-substituted CeO2.
Resumo:
The thermodynamic activity of sodium oxide (Na2O) in the Nasicon solid solution series, Na1+xZr2SixO12, has been measured in the temperature range 700�1100 K using solid state galvanic cells: Pt|CO2 + O2|Na2CO3?Na1+xZr2SixP3-xO12?(Y2O3)ZrO2?In + In2O3|Ta, Pt for 1 = ? = 2.5, and Pt?CO2 + O2?Na2CO3?ß-alumina?Na1+xZr2SixP3-xO12?Ar + O2?Pt for x = 0, 0.5, 2.5, and 3. The former cell, where the Nasicon solid solution is used as an electrolyte along with yttria-stabilized zirconia, is well suited for Nasicon compositions with high ionic conductivity. In the latter cell, ß-alumina is used as an electrolyte and the Nasicon solid solution forms an electrode. The chemical potential of Na2O is found to increase monotonically with x at constant temperature. The partial entropy of Na2O decreases continuously with x. However, the partial enthalpy exhibits a maximum at x = 2. This suggests that the binding energy is minimum at the composition where ionic conductivity and cell volume have maximum values.
Resumo:
The reactions of the complexes [MI2(CO)3-(NCMe)2] (M = Mo, W) with the diphosphazane ligands RN{P(OPh)2}2 (R = Me, Ph) in CH2Cl2 at room temperature afford new seven-coordinated complexes of the type [MI2(CO)3{P(OPh)2}2NR]. The molybdenum complexes are sensitive to air oxidation even in the solid state, whereas the tungsten complexes are more stable in the solid state and in solution. The structure of the tungsten complex [WI2(CO)3{P(OPh)2}2NPh] has been determined by single-crystal X-ray diffraction. It crystallizes in the orthorhombic system with the space group Pna 2(1), a = 19.372 (2) angstrom, b = 11.511 (1) angstrom, c = 15.581 (1) angstrom, and Z = 4. Full-matrix least-squares refinement with 3548 reflections (I > 2.5-sigma-(I)) led to final R and R(w) values of 0.036 and 0.034, respectively. The complex adopts a slightly distorted pentagonal-bypyramidal geometry rarely observed for such a type of complexes; two phosphorus atoms of the diphosphazane ligand, two iodine atoms, and a carbonyl group occupy the equatorial plane, and the other two carbonyl groups, the apical positions.
Resumo:
A simple n-state configurational excitation model which takes into account the presence of weakly connected pentamer units in liquid water is proposed. The model has features of both the “continuum” and “mixture” models. Calculations based on this model satisfactorily account for the important, diagnostic thermodynamic properties of water such as the density maximum, fraction of monomers and so on.
Resumo:
Transitions from the low-to the high-spin state in Fe2+ and Co3+ compounds have been examined by X-ray and UV photoelectron spectroscopy. It has been shown that the core-level bands in XPES, in particular the metal 3s band, as well as the valence bands, are diagnosis in the study of spin-state transitions.
Resumo:
The terminal solid solubilities of the periclase (MgO-rich) and zincite (ZnO-rich) solid solutions in the MgO---ZnO system have been determined by measuring the activity of MgO using a solid-state galvanic cell of the type 02(g), Pt/MgO, MgF2//MgF2//{χMgO+(1-χ)ZnO}(s, sln), MgF2/Pt, O2(g) in the temperature range 900–1050°C. The ZnO activity was calculated by graphical Gibbs-Duhem integration. The activity-composition plots of both components exhibit a strong positive deviation from ideality and are characterised by a miscibility gap. The terminal solid solubilities of the periclase and zincite solid solutions obtained from the activity-composition plots are found to be in reasonable agreement with those reported in the literature.
Resumo:
The model for spin-state transitions described by Bari and Sivardiere (1972) is static and can be solved exactly even when the dynamics of the lattice are included; the dynamic model does not, however, show any phase transition. A coupling between the octahedra, on the other hand, leads to a phase transition in the dynamical two-sublattice displacement model. A coupling of the spin states to the cube of the sublattice displacement leads to a first-order phase transition. The most reasonable model appears to be a two-phonon model in which an ion-cage mode mixes the spin states, while a breathing mode couples to the spin states without mixing. This model explains the non-zero population of high-spin states at low temperatures, temperature-dependent variations in the inverse susceptibility and the spin-state population ratio, as well as the structural phase transitions accompanying spin-state transitions found in some systems.
Resumo:
In solution phase, aliphatic amines add on to fullerenes; vapourization of graphite in presence of methylamine gives nitrogeneous C60 derivatives. Reactions of C60 with SbCl5 and liquid Br2 yield halogen adducts.
Resumo:
Nitrogen is dissociatively adsorbed on an annealed Ni/TiO2 surface just as on a Ti–Ni alloy surface while it is molecularly adsorbed on a Ni/Al2O3 surface.
Resumo:
Infrared spectroscopy provides a valuable tool to investigate the spin-state transition in Fe(II) complexes of the type Fe(Phen)2(NCS)2. With progressive substitution of Fe by Mn, the first-order transition changes over to a second-order transition, with a high residual population of the high-spin state even at very low temperatures
Resumo:
Thermal crystallization studies have been carried out on bulk, semiconducting AsxTe100−x glasses of different compositions using Differential Scanning Caloritmery. AsxTe100−x glasses with x < 40, are found to exhibit one glass transition and one crystallization. On the other hand, glasses with composition 40 less-than-or-equals, slantxless-than-or-equals, slant 50 show one glass transition and two crystallization reactions. It has been found that in glasses with x greater-or-equal, slanted 40, the two crystallization reactions progressively merge with an increase in arsenic concentration. Consequently AsxTe100−x glasses with x greater-or-equal, slanted 50 show only one crystallization. The composition dependence of crystallization temperatures and activation energies for crystallization estimated by Kissinger's method, show marked deviations at a composition x = 40. These observations can be explained in terms of the changes in the local structure of the material with composition.