960 resultados para Short story.
Resumo:
Short-TE MRS has been proposed recently as a method for the in vivo detection and quantification of γ-aminobutyric acid (GABA) in the human brain at 3 T. In this study, we investigated the accuracy and reproducibility of short-TE MRS measurements of GABA at 3 T using both simulations and experiments. LCModel analysis was performed on a large number of simulated spectra with known metabolite input concentrations. Simulated spectra were generated using a range of spectral linewidths and signal-to-noise ratios to investigate the effect of varying experimental conditions, and analyses were performed using two different baseline models to investigate the effect of an inaccurate baseline model on GABA quantification. The results of these analyses indicated that, under experimental conditions corresponding to those typically observed in the occipital cortex, GABA concentration estimates are reproducible (mean reproducibility error, <20%), even when an incorrect baseline model is used. However, simulations indicate that the accuracy of GABA concentration estimates depends strongly on the experimental conditions (linewidth and signal-to-noise ratio). In addition to simulations, in vivo GABA measurements were performed using both spectral editing and short-TE MRS in the occipital cortex of 14 healthy volunteers. Short-TE MRS measurements of GABA exhibited a significant positive correlation with edited GABA measurements (R = 0.58, p < 0.05), suggesting that short-TE measurements of GABA correspond well with measurements made using spectral editing techniques. Finally, within-session reproducibility was assessed in the same 14 subjects using four consecutive short-TE GABA measurements in the occipital cortex. Across all subjects, the average coefficient of variation of these four GABA measurements was 8.7 ± 4.9%. This study demonstrates that, under some experimental conditions, short-TE MRS can be employed for the reproducible detection of GABA at 3 T, but that the technique should be used with caution, as the results are dependent on the experimental conditions. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Summary
Resumo:
Community Partnerships for Protecting Children (CPPC) is an approach that neighborhoods, towns, cities and states can adopt to improve how children are protected from abuse and/or neglect. The State of Iowa recognizes that the child protection agency, working alone, cannot keep children safe from abuse and neglect. It aims to blend the work and expertise of professionals and community members to bolster supports for vulnerable families and children. Community Partnerships is not a “program” – rather, it is a way of working with families to help services and supports to be more inviting, need-based, accessible and relevant. It incorporates prevention strategies as well as those interventions needed to address abuse, once identified.
Resumo:
We propose an equation to calculate the intensity correlation function of a dye-laser model with a pump parameter subject to finite-bandwidth fluctuations. The equation is valid, in the weak-noise limit, for all times. It incorporates novel non-Markovian features. Results are given for the short-time behavior of the correlation function. It exhibits a characteristic initial plateau. Our findings are supported by a numerical simulation of the model.
Resumo:
The nucleon spectral function in nuclear matter fulfills an energy weighted sum rule. Comparing two different realistic potentials, these sum rules are studied for Greens functions that are derived self-consistently within the T matrix approximation at finite temperature.
Resumo:
The distribution of single-particle strength in nuclear matter is calculated for a realistic nucleon-nucleon interaction. The influence of the short-range repulsion and the tensor component of the nuclear force on the spectral functions is to move approximately 13% of the total strength for all single-particle states beyond 100 MeV into the particle domain. This result is related to the abundantly observed quenching phenomena in nuclei which include the reduction of spectroscopic factors observed in (e,ep) reactions and the missing strength in low energy response functions.
Resumo:
Summary
Resumo:
A numerical study of Brownian motion of noninteracting particles in random potentials is presented. The dynamics are modeled by Langevin equations in the high friction limit. The random potentials are Gaussian distributed and short ranged. The simulations are performed in one and two dimensions. Different dynamical regimes are found and explained. Effective subdiffusive exponents are obtained and commented on.
Resumo:
Audit report on Story County, Iowa for the year ended June 30, 2010
Resumo:
We propose a short-range generalization of the p-spin interaction spin-glass model. The model is well suited to test the idea that an entropy collapse is at the bottom line of the dynamical singularity encountered in structural glasses. The model is studied in three dimensions through Monte Carlo simulations, which put in evidence fragile glass behavior with stretched exponential relaxation and super-Arrhenius behavior of the relaxation time. Our data are in favor of a Vogel-Fulcher behavior of the relaxation time, related to an entropy collapse at the Kauzmann temperature. We, however, encounter difficulties analogous to those found in experimental systems when extrapolating thermodynamical data at low temperatures. We study the spin-glass susceptibility, investigating the behavior of the correlation length in the system. We find that the increase of the relaxation time is accompanied by a very slow growth of the correlation length. We discuss the scaling properties of off-equilibrium dynamics in the glassy regime, finding qualitative agreement with the mean-field theory.
Resumo:
We compute up to and including all the c-2 terms in the dynamical equations for extended bodies interacting through electromagnetic, gravitational, or short-range fields. We show that these equations can be reduced to those of point particles with intrinsic angular momentum assuming spherical symmetry.