952 resultados para Shock Tube


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the early UV and optical light curve of Type IIP supernova (SN) 2010aq at z = 0.0862, and compare it to analytical models for thermal emission following SN shock breakout in a red supergiant star. SN 2010aq was discovered in joint monitoring between the Galaxy Evolution Explorer (GALEX) Time Domain Survey (TDS) in the NUV and the Pan-STARRS1 Medium Deep Survey (PS1 MDS) in the g, r, i, and z bands. The GALEX and Pan-STARRS1 observations detect the SN less than 1 day after the shock breakout, measure a diluted blackbody temperature of 31,000 +/- 6000 K 1 day later, and follow the rise in the UV/optical light curve over the next 2 days caused by the expansion and cooling of the SN ejecta. The high signal-to-noise ratio of the simultaneous UV and optical photometry allows us to fit for a progenitor star radius of 700 +/- 200R(circle dot), the size of a red supergiant star. An excess in UV emission two weeks after shock breakout compared with SNe well fitted by model atmosphere-code synthetic spectra with solar metallicity is best explained by suppressed line blanketing due to a lower metallicity progenitor star in SN 2010aq. Continued monitoring of PS1 MDS fields by the GALEX TDS will increase the sample of early UV detections of Type II SNe by an order of magnitude and probe the diversity of SN progenitor star properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expansion of a dense plasma through a more rarefied ionized medium is a phenomenon of interest in various physics environments ranging from astrophysics to high energy density laser-matter laboratory experiments. Here this situation is modeled via a one-dimensional particle-in-cell simulation; a jump in the plasma density of a factor of 100 is introduced in the middle of an otherwise equally dense electron-proton plasma with an uniform proton and electron temperature of 10 eV and 1 keV, respectively. The diffusion of the dense plasma, through the rarefied one, triggers the onset of different nonlinear phenomena such as a strong ion-acoustic shock wave and a rarefaction wave. Secondary structures are detected, some of which are driven by a drift instability of the rarefaction wave. Efficient proton acceleration occurs ahead of the shock, bringing the maximum proton velocity up to 60 times the initial ion thermal speed. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3469762]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report on the radiography of a shock-compressed target using laser produced proton beams. A low-density carbon foam target was shock compressed by long pulse high-energy laser beams. The shock front was transversally probed with a proton beam produced in the interaction of a high intensity laser beam with a gold foil. We show that from radiography data, the density profile in the shocked target can be deduced using Monte Carlo simulations. By changing the delay between long and short pulse beams, we could probe different plasma conditions and structures, demonstrating that the details of the steep density gradient can be resolved. This technique is validated as a diagnostic for the investigation of warm dense plasmas, allowing an in situ characterization of high-density contrasted plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The localized deposition of the energy of a laser pulse, as it ablates a solid target, introduces high thermal pressure gradients in the plasma. The thermal expansion of this laser-heated plasma into the ambient medium (ionized residual gas) triggers the formation of non-linear structures in the collisionless plasma. Here an electron-proton plasma is modelled with a particle-in-cell simulation to reproduce aspects of this plasma expansion. A jump is introduced in the thermal pressure of the plasma, across which the otherwise spatially uniform temperature and density change by a factor of 100. The electrons from the hot plasma expand into the cold one and the charge imbalance drags a beam of cold electrons into the hot plasma. This double layer reduces the electron temperature gradient. The presence of the low-pressure plasma modifies the proton dynamics compared with the plasma expansion into a vacuum. The jump in the thermal pressure develops into a primary shock. The fast protons, which move from the hot into the cold plasma in the form of a beam, give rise to the formation of phase space holes in the electron and proton distributions. The proton phase space holes develop into a secondary shock that thermalizes the beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ion-acceleration processes have been studied in ultraintense laser plasma interactions for normal incidence irradiation of solid deuterated targets via neutron spectroscopy. The experimental neutron spectra strongly suggest that the ions are preferentially accelerated radially, rather than into the bulk of the material from three-dimensional Monte Carlo fitting of the neutron spectra. Although the laser system has a 10(-7) contrast ratio, a two-dimensional magnetic hydrodynamics simulation shows that the laser pedestal generates a 10 mum scale length in the coronal plasma with a 3 mum scale-length plasma near the critical density. Two-dimensional particle-in-cell simulations, incorporating this realistic density profile, indicate that the acceleration of the ions is caused by a collisionless shock formation. This has implications for modeling energy transport in solid is caused by a collisionless shock formation. This has implications for modeling energy transport in solid density plasmas as well as cone-focused fast ignition using the next generation PW lasers currently under construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: A phase I study to define toxicity and recommend a phase II dose of the HSP90 inhibitor alvespimycin (17-DMAG; 17-dimethylaminoethylamino-17-demethoxygeldanamycin). Secondary endpoints included evaluation of pharmacokinetic profile, tumor response, and definition of a biologically effective dose (BED). PATIENTS AND METHODS: Patients with advanced solid cancers were treated with weekly, intravenous (i.v.) 17-DMAG. An accelerated titration dose escalation design was used. The maximum tolerated dose (MTD) was the highest dose at which = 1/6 patients experienced dose limiting toxicity (DLT). Dose de-escalation from the MTD was planned with mandatory, sequential tumor biopsies to determine a BED. Pharmacokinetic and pharmacodynamic assays were validated prior to patient accrual. RESULTS: Twenty-five patients received 17-DMAG (range 2.5-106 mg/m(2)). At 106 mg/m(2) of 17-DMAG 2/4 patients experienced DLT, including one treatment-related death. No DLT occurred at 80 mg/m(2). Common adverse events were gastrointestinal, liver function changes, and ocular. Area under the curve and mean peak concentration increased proportionally with 17-DMAG doses 80 mg/m(2) or less. In peripheral blood mononuclear cells significant (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The serine/threonine protein kinase B (PKB/Akt) is involved in insulin signaling, cellular survival, and transformation. Carboxyl-terminal modulator protein (CTMP) has been identified as a novel PKB binding partner in a yeast two-hybrid screen, and appears to be a negative PKB regulator with tumor suppressor-like properties. In the present study we investigate novel mechanisms by which CTMP plays a role in apoptosis process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GYY4137 (morpholin-4-ium-4-methoxyphenyl(morpholino) phosphinodithioate) is a slow-releasing hydrogen sulfide (H2S) donor. Administration of GYY4137 (50 mg/kg, iv) to anesthetized rats 10 min after lipopolysaccharide (LPS; 4 mg/kg, iv) decreased the slowly developing hypotension. GYY4137 inhibited LPS-induced TNF-alpha production in rat blood and reduced the LPS-evoked rise in NF-kappa B;B activation, inducible nitric oxide synthase/cyclooxygenase-2 expression, and generation of PGE(2) and nitrate/nitrite in RAW 264.7 macrophages. GYY4137 (50 mg/kg, ip) administered to conscious rats 1 or 2 h after (but not 1 h before) LPS decreased the subsequent (4 h) rise in plasma proinflammatory cytokines (TNF-alpha, IL-1 beta, IL-6), nitrite/nitrate, C-reactive protein, and L-selectin. GYY4137 administration also decreased the LPS-evoked increase in lung myeloperoxidase activity, increased plasma concentration of the anti-inflammatory cytokine IL-10, and decreased tissue damage as determined histologically and by measurement of plasma creatinine and alanine aminotransferase activity. Tune-expired GYY4137 (50 mg/kg, ip) did not affect the LPS-induced rise in plasma TNF-alpha or lung myeloperoxidase activity. GYY4137 also decreased the LPS-mediated upregulation of liver transcription factors (NF-kappa B and STAT-3). These results suggest ail anti-inflammatory effect of GYY4137. The possibility that GYY4137 and other slow-releasing H2S donors exert anti-inflammatory activity in other models of inflammation and in humans warrants further study. (C) 2009 Elsevier Inc. All rights reserved.