938 resultados para SOL-GEL PROCESS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid transparent and flexible siloxane-polypropyleneglycol (PPG) materials with covalent bonds between the inorganic (siloxane) and organic (polymeric) phases were prepared by sol-gel process. In order to improve the quality of the mechanical properties of these materials, different amounts of methyltriethoxysilane (MTES) were added to the initial sol. The effect of MTES addition on the structure of the composites was studied by Small-Angle X-Ray Scattering (SAXS) and Si-29 Nuclear Magnetic Resonance (Si-29 NMR). In absence of MTES, SAXS spectra exhibit a peak that is assigned to spatial correlation due to short range order between the siloxane clusters embedded in the polymeric phase. The experimental results indicate that, for low MTES concentrations ([MTES]/[O] less than or equal to 0.8, O: ether-type oxygen of PPG), the silicon species resulting from hydrolysis and condensation of MTES fill the open spaces between polymeric chains, interacting with the ether-type oxygens. For larger MTES content ([MTES]/[O] greater than or equal to 0.8), the number of free ether-type oxygen sites avalaible for reaction with such silicon species is not large enough. Consequently, a fraction of silicon species resulting from MTES addition graft to siloxane clusters formed by hydrolysis and condensation of the hybrid precursor. For all MTES concentrations the condensation degree of the siloxane phase, determined from Si-29 NMR spectroscopy, is high (> 69%), as expected under neutral pH synthesis conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Siloxane-polypropyleneoxide (PPO) hybrids doped with sodium perchlorate (NaClO4) obtained by the sol-gel process were prepared with two PPO molecular weights (2000 and 4000 g/mol) and two sodium concentrations such as [O]/[Na] = 4 and 15 (O being the ether-type oxygen of PPO chains). The structure of these hybrids was investigated by Na-23 nuclear magnetic resonance (NMR) and X-ray absorption spectroscopy at the sodium K-edge (1071.8 eV) whereas complex impedance spectroscopy was used to determine their ionic conductivity. Three sodium sites were determined by NMR. The conjunction of NMR and X-ray absorption results allows us to identify one site in which Na is in a NaCl structure, a second one in which Na is in contact with perchlorate anions. The third site is attributed to mobile sodium species in interaction with the polymeric chain. The relative proportion of the different sites in the materials determines the ionic conductivity of the materials at room temperature: the largest ionic conductivity is 8.9 x 10(-6) Omega(-1) cm(-1) and is observed on the material with the larger amount (at least 85%) of sites in which sodium interacts with the polymer. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The colloidal route of the sol-gel process was used to prepare supported SnO2 membranes. The influence of the sol and monoelectrolyte concentrations on the formation of the gel layer by sol-casting on the top of macroporous alpha-Al2O3 support was described. The stability of the colloidal suspension as a function of the concentrations was analyzed from creep-recovery measurements. The calcined supported membranes were characterized by nitrogen adsorption-desorption isotherms and scanning electron microscopy. The set of results show that homogeneous membrane layers containing the smallest quantity of cracks are formed in a critical interval of sol (1.01 less than or equal to[SnO2]less than or equal to 1.4 M) and electrolyte (2.O less than or equal to[Cl-]less than or equal to 4.0 mM) concentrations. The samples prepared from concentrated suspensions present a lot of interconnected cracks which favors the peeling of the coated layer. The membranes have pores of average diameter of about 1 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cr-doped xerogels were obtained by sol-gel process from the acid-catalyzed and ultrasound-stimulated hydrolysis of tetraethoxysilane (TEOS) with addition of CrCl3.6H(2)O in water solution during the liquid step of the process. The gels were aged immersed in different pH solutions for about 30 days, after that they were allowed to dry. The samples were annealed at temperatures ranging from 40 to 600degreesC and analyzed by UV-visible absorption spectroscopy. Cr3+ is the preferable oxidation state of the chromium ion in the gels annealed up to 250-300degreesC, in the case of aging in solutions of pH=5 and 11. A high UV absorption below similar to320 nm, due to the host gel, and different absorption bands, depending on the temperature, due to the chromium ion were observed in the xerogels at temperatures below similar to250degreesC, in the case of aging in solutions of pH=1 and 2. These absorption bands have not been assigned. Above 300degreesC up to 600degreesC, Cr5+, and possibly Cr6+, are the preferable oxidation states of the chromium ion independent of the pH of the aging solution, so the xerogels turn to a yellowish appearance in all cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strontium titanate (SrTiO3) thin films were prepared by dip-coating Si(111) single-crystal substrates in citrate solutions of ethylene glycol, considering several citric acid/ethylene glycol (CA/EG) ratios. Measurements of intrinsic viscosity indicate that increasing the amount of EG increases the precursors' polymeric chains and increases the weight loss. After deposition the substrates were dried on a hotplate (approximate to 150 degrees C); this was followed by heat treatment at temperatures ranging from 500 to 700 degrees C using heating and cooling rates of 1 degrees C min(-1). SEM and optical microscopy investigations of the sintered films obtained from different CA/EG ratios indicate that there is a critical thickness above which the films present cracks. This critical thickness for SrTiO3 films deposited on the Si(111) substrate is about 150 nm, Measurements of crack spacing as a function of film thickness indicate that the origin of cracks cannot be explained by the elastic behavior of the film but rather by the viscoelastic relaxation of the film during pyrolysis and sintering. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid organic - inorganic nanocomposites doped with Fe-II and Fe-III ions and exhibiting interesting magnetic properties have been obtained by the sol - gel process. The hybrid matrix of these ormosils ( organically modified silicates), classed as di-ureasils and termed U( 2000), is composed of poly( oxyethylene) chains of variable length grafted to siloxane groups by means of urea crosslinkages. Iron perchlorate and iron nitrate were incorporated in the diureasil matrices, leading to compositions within the range 80 greater than or equal to n greater than or equal to 10, n being the molar ratio of ether-type O atoms per cation. The structure of the doped diureasils was investigated by small-angle X-ray scattering (SAXS). For Fe-II-doped samples, SAXS results suggest the existence of a two-level hierarchical structure. The primary level is composed of spatially correlated siloxane clusters embedded in the polymeric matrix and the secondary, coarser level consists of domains where the siloxane clusters are segregated. The structure of Fe-III-doped hybrids is different, revealing the existence of iron oxide based nanoclusters, identified as ferrihydrite by wide-angle X-ray diffraction, dispersed in the hybrid matrix. The magnetic susceptibility of these materials was determined by zero-field-cooling and field-cooling procedures as functions of both temperature and field. The different magnetic features between Fe-II- and Fe-III-doped samples are consistent with the structural differences revealed by SAXS. While Fe-II-doped composites exhibit a paramagnetic Curie-type behaviour, hybrids containing Fe-III ions show thermal and field irreversibilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New silica-polypropyleneglycol ormosils (organically modified silicates) with covalent bends between the organic (polymer) and inorganic (silica) phases have been prepared by the sol-gel process. Their structural evolution during sol formation, sol-gel transition, gel aging and drying has been studied in situ by small-angle X-ray scattering (SAXS). The experimental SAXS curves corresponding to sols and gels exhibit features expected from fractal objects. Clusters of size around 55 Angstrom with an initial fractal dimension D = 2.4 are formed in the sol. They are constituted of small primary silica particles chemically crosslinked at the end of the polymer chains. A strong liquid-like spatial correlation between the silica particles develops during drying due to the shrinkage of the polymeric network induced by water and ethanol evaporation. The continuous increase in SAXS intensity during drying, while the interparticle distance remains constant, is a consequence of the progressive growth of the dry fraction of the total volume. After drying, the gel structure consists of a rather compact arrangement of silica particles embedded in the polypropyleneglycol matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transparent, flexible, and luminescent EU3+-doped siloxane-poly(ethylene glycol) (PEG) nanocomposites have been obtained by the sol-gel process. The inorganic (siloxane) and organic PEG phases are usually linked by weak bonds (hydrogen bonds or van der Waals forces), and small-angle X-ray scattering (SAXS) measurements suggest that the structure of these materials consists of fractal siloxane aggregates embedded in the PEG matrix. For low Eu3+ contents, n = 300 and n = 80, the aggregates are small and isolated and their fractal dimensions are 2.1 and 1.7, respectively. These values are close to those expected for gelation mechanisms consisting of reaction-limited cluster-cluster aggregation (RLCCA) and diffusion-limited cluster-cluster aggregation (DLCCA). For high Eu3+ content, SAYS results are consistent with a two-level structure: a primary level of siloxane aggregates and a second level, much larger, formed by the coalescence of the primary ones. The observed increase in the glass transition temperature for increasing Eu3+ content is consistent with the structural model derived from SAXS measurements. Extended X-ray absorption fine structure (EXAFS) and luminescence spectroscopy measurements indicate that under the experimental conditions utilized here Eu3+ ions do not strongly interact with the polymeric phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The local and medium-range structures of siloxane-POE hybrids doped with Fe(III) ions and prepared by the sol-gel process were investigated by X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) and small-angle X-ray scattering (SAXS), respectively. The experimental results show that the structure of these composites depends on the doping level. EXAFS data reveal that, for low doping levels ([O]/[Fe] > 40, oxygens being of the ether-type of the POE chains), Fe(III) ions are surrounded essentially by a shell of chlorine atoms, suggesting the formation of FeCl4- anions. At high doping levels ([O]/[Fe] < 20), Fe(III) ions interacts mainly with oxygen atoms and form FeOx species. The relative proportion of FeOx species increases with iron concentration, this result being consistent with the results of SAXS measurements showing that increasing iron doping induces the formation of iron-rich nanodomains embedded in the polymer matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of lithium salt doping on the structure and ionic conduction properties of silica-polyethyleneglycol composites is reported. These materials, so called ormolytes (organically modified electrolytes), were obtained by the sol-gel process. They have chemical stability due to the covalent bonds between the inorganic (silica) and organic (polymer) phase. The structure of these hybrid materials was investigated by small-angle X-ray scattering (SAXS) as a function of lithium concentration [O]/[Li] (O being the oxygens of the ether type). The spectra have a well-defined peak attributed to the existence of a liquid-like spatial correlation of silica clusters. The ionic conductivity was studied by AC impedance spectroscopy and is maximum for [O]/[Li] = 15. This result is consistent with SAXS and thermo-mechanical analysis measurements and is due to the formation of cross-linking between the polymer chains for the larger lithium concentrations. These materials are solid, transparent, flexible and have an ionic conductivity up to 10(-4) S/cm. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The viscoelastic properties of siloxane-poly(oxypropylene) (PPO) nanocomposites prepared by the sol-gel process has been analyzed during gelation by dynamic rheological measurements. The changes of storage and loss moduli, complex viscosity and phase angle has been measured as a function of time showing the newtonian viscosity of the sol in the initial step of gelation, and its progressive transformation to a viscoelastic gel. The rheologic properties have been correlated to mass fractal, nearly linear growth models and percolation theory. This study, completed by quasi-elastic light scattering and Si-29 solid state nuclear magnetic resonance measurements, shows that the mechanisms of gelation of siloxane-PPO hybrids depend on the molecular weight of the polymer and on the pH of the hybrid sol. For hybrids prepared in acid medium, a polymerization involving silicon reactive species located at the extremity of the polymer chains and presenting a functionality f = 2 occurs, forming a fractal structure during the first stage of sol-gel transition. For samples prepared under neutral pH, the fractal growth is only observed for hybrids containing short polymer chains (M-w similar to 130 gmol(-1)). The fractal dimensionality determined from the change in the rheological properties, indicates that the fractal growth mechanism changes from reaction-limited to diffusion-limited aggregation when the molecular weight of the PPO increases from 130 to 4000 gmol(-1) and as catalyst conditions change from acidic to neutral. Near the gel point, these hybrid gels have the typical scaling behavior expected from percolation theory. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation of crack-free SnO2 supported membranes requires the development of new strategies of synthesis capable to allow controlled changes of surface chemistry and to improve the processability of supported layers. In this way, the controlled modification of the SnO2 nanoparticle surface by adding capping molecules like Tiron(R) ((OH)(2)C6H2(SO3Na)(2)) during the sol-gel process was studied, aiming to obtain high performance membranes. Colloidal suspensions were prepared by hydrolyzing SnCl4.5H(2)O aqueous solution with NH4OH in presence of Tiron(R). The effect of the amount of Tiro(R) (from I to 20 wt.%) on the structural features of nanoparticles, powder redispersability and particle-solution interface properties was investigated by X-ray powder diffraction (XRPD), extended X-ray absorption fine structure (EXAFS), quasi-elastic light scattering and electrophoretic mobility measurements. XRPD and EXAFS results showed that the addition of Tiron(R) up to 20 wt.% to colloidal suspensions does not affect the crystallite size of SnO2 primary particles, determined around 2-3 nm. This value is comparable to the hydrodynamic size measured after redispersion of powder prepared with amount of Tiro(R) higher than 7.5 wt.%, indicating the absence of condensation reactions between primary particles after the initial precipitation step. As a consequence the powder with amount of Tiron(R) > 7.5 wt.%, can be fully redispersed in aqueous solution at pH greater than or equal to I I until a nanoparticle concentration of 6 vol.%. The electrophoresis measurements showed a decrease of the isoelectric point by increasing the amount of grafted Tiron(R) at the SnO2 nanoparticle surface, resulting in negatively charged particle-solution interface in all the studied pH range (2-11). These features govern the gelation process favoring the preparation of crack-free SnO2 supported membranes. The control exercised by Tiron(R) modifying agent in the aggregation process allows the fine-tuning of the porosity, from 0.124 to 0.065 cm(3) g(-1), and mean pore size, from 6.4 to 1.9 nm, as the amount of grafted molecules increases from 0 to 10 wt.%. In consequence, the membrane cut-off determined by filtration of polyethylene glycol standard solutions can be screened from 1500 to 3500 g mol(-1). (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Siloxane-polyoxypropylene (PPO) hybrids obtained by the sol-gel process and containing short polymer chain have been doped with different sodium salts NaX (X = ClO4, BF4 or I). The effect of the counter-ion (X) on the chemical environment of the sodium ions and on the ionic conductivity of these hybrids was investigated by Na-23 NMR, small angle X-ray scattering (SAXS), complex impedance, Raman spectroscopy and differential scanning calorimetry (DSC). Results reveal that the different sodium salts have essentially the same effect on the nanoscopic structure of the hybrids. The formation of immobile Na+ cations involved in NaCl-like species could be minimized by using a low amount of HCl as hydrolytic catalyst. The differences in the ionic conductivity of hybrids doped with different sodium salts were correlated with the proportion of Na ions solvated by ether-type oxygen of the polymeric chains and by the carboxyl oxygen located in the urea groups of the PPO chain extremities. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Siloxane-poly(oxyethylene) hybrids obtained by the sol-gel process and containing short polymer chain have been doped with potassium triflate (KCF3SO3). The local structure of these hybrids was investigated by X-ray absorption spectroscopy near the potassium K-edge. Small angle X-ray scattering was used to determine the structure at the nanometer scale. Results revealed that at low and medium potassium concentration (n = [O][K] >= 8, where n represents the molar ratio of ether-type oxygen atoms per alkaline cation) the cations interact mainly with the polymer chains, while at larger doping level (n < 8) the formation of a polyehter:KCF3SO3 Complex is observed. The nanoscopic structure of the hybrids is also affected by doping. By increasing the doping level, decreasing trends in the electronic density contrast between siloxane nanoparticles and polyether matrix and in the siloxane interparticle distance are observed. At high doping level the small angle X-ray scattering patterns are strongly modified, showing the disappearance of the correlation peak and the formation of a potassium-containing nanophase. (c) 2006 Elsevier B.V. All rights reserved.