941 resultados para Ruthenium (II) Complexes
Resumo:
Antigen presentation to CD4+ T lymphocytes requires transport of newly synthesized major histocompatibility complex (MHC) class II molecules to the endocytic pathway, where peptide loading occurs. This step is mediated by a signal located in the cytoplasmic tail of the MHC class II-associated Ii chain, which directs the MHC class II-Ii complexes from the trans-Golgi network (TGN) to endosomes. The subcellular machinery responsible for the specific targeting of MHC class II molecules to the endocytic pathway, as well as the first compartments these molecules enter after exit from the TGN, remain unclear. We have designed an original experimental approach to selectively analyze this step of MHC class II transport. Newly synthesized MHC class II molecules were caused to accumulate in the Golgi apparatus and TGN by incubating the cells at 19°C, and early endosomes were functionally inactivated by in vivo cross-linking of transferrin (Tf) receptor–containing endosomes using Tf-HRP complexes and the HRP-insoluble substrate diaminobenzidine. Inactivation of Tf-containing endosomes caused a marked delay in Ii chain degradation, peptide loading, and MHC class II transport to the cell surface. Thus, early endosomes appear to be required for delivery of MHC class II molecules to the endocytic pathway. Under cross-linking conditions, most αβIi complexes accumulated in tubules and vesicles devoid of γ-adaptin and/or mannose-6-phosphate receptor, suggesting an AP1-independent pathway for the delivery of newly synthesized MHC class II molecules from the TGN to endosomes.
Resumo:
Photosystem II is a reaction center protein complex located in photosynthetic membranes of plants, algae, and cyanobacteria. Using light energy, photosystem II catalyzes the oxidation of water and the reduction of plastoquinone, resulting in the release of molecular oxygen. A key component of photosystem II is cytochrome b559, a membrane-embedded heme protein with an unknown function. The cytochrome is unusual in that a heme links two separate polypeptide subunits, α and β, either as a heterodimer (αβ) or as two homodimers (α2 and β2). To determine the structural organization of cytochrome b559 in the membrane, we used site-directed mutagenesis to fuse the coding regions of the two respective genes in the cyanobacterium Synechocystis sp. PCC 6803. In this construction, the C terminus of the α subunit (9 kDa) is attached to the N terminus of the β subunit (5 kDa) to form a 14-kDa αβ fusion protein that is predicted to have two membrane-spanning α-helices with antiparallel orientations. Cells containing the αβ fusion protein grow photoautotrophically and assemble functional photosystem II complexes. Optical spectroscopy shows that the αβ fusion protein binds heme and is incorporated into photosystem II. These data support a structural model of cytochrome b559 in which one heme is coordinated to an α2 homodimer and a second heme is coordinated to a β2 homodimer. In this model, each photosystem II complex contains two cytochrome b559 hemes, with the α2 heme located near the stromal side of the membrane and the β2 heme located near the lumenal side.
Resumo:
Invariant chain (Ii) is an intracellular type II transmembrane glycoprotein that is associated with major histocompatibility complex class II molecules during biosynthesis. Ii exists in two alternatively spliced forms, p31 and p41. Both p31 and p41 facilitate folding of class II molecules, promote egress from the endoplasmic reticulum, prevent premature peptide binding, and enhance localization to proteolytic endosomal compartments that are thought to be the sites for Ii degradation, antigen processing, and class II-peptide association. In spite of the dramatic and apparently equivalent effects that p31 and p41 have on class II biosynthesis, the ability of invariant chain to enhance antigen presentation to T cells is mostly restricted to p41. Here we show that degradation of Ii leads to the generation of a 12-kDa amino-terminal fragment that in p41-positive, but not in p31-positive, cells remains associated with class II molecules for an extended time. Interestingly, we find that coexpression of the two isoforms results in a change in the pattern of p31 degradation such that endosomal processing of p31 also leads to extended association of a similar 12-kDa fragment with class II molecules. These data raise the possibility that p41 may have the ability to impart its pattern of proteolytic processing on p31 molecules expressed in the same cells. This would enable a small number of p41 molecules to modify the post-translational transport and/or processing of an entire cohort of class II-Ii complexes in a manner that could account for the unique ability of p41 to enhance antigen presentation.
Resumo:
Neste trabalho, foram estudadas as propriedades fotoquímica e/ou fotofísica de alguns compostos de coordenação de rênio(l) e ferro(I I). A irradiação dos complexos fac-[Re(CO)3(NN)(trans-L)]+, NN= 4,7-difenil-1,10- fenantrolina (ph2phen) ou 5-cloro-1,10-fenantrolina (Clphen) e L = 1,2-bis(4-piridil)etileno (bpe) ou 4-estirilpiridina (stpy), em acetonitrila ou em filme de poli(metacrilato de metila) (PMMA) resulta em variações espectrais condizentes com a fotoisomerização trans-cis do ligante coordenado. A determinação dos rendimentos quânticos para a fotorreação pela variação espectral resultou em valores aparentes, uma vez que o reagente e o fotoproduto absorvem na mesma região. Para a determinação do rendimento quântico real, Φreal, utilizou-se a técnica de 1H RMN, na qual os sinais do fotoproduto e do reagente são observados em regiões distintas com diferentes constantes de acoplamento. Os valores de Φreal obtidos para fac-[Re(CO)3h(NN)(trans-bpe)]+ (ph2phen: Φ313= 0,43 ± 0,03; Φ365= 0,44 ± 0,02; Φ404= 0,43 ± 0,02; Clphen: Φ313= 0,56 ± 0,03; Φ365= 0,55 ± 0,04; Φ404= 0,57 ± 0,06) são independentes do comprimento de onda de irradiação, indicando a existência de um único canal para a população do estado excitado 3ILtrans-bpe. Por outro lado, para fac-[Re(CO)3(NN)(trans-stpy)]+, os valores de Φreal sob irradiação a 404 nm são menores que os determinados para os demais comprimentos de onda de irradiação (ph2phen: Φ313= 0,60 ± 0,05; Φ365= 0,64 ± 0,09; Φ404= 0,42 ± 0,03; Clphen: Φ313= 0,52 ± 0,05; Φ365= 0,58 ± 0,02; Φ404= 0,41 ± 0,06), indicando que, a energias maiores, em que o Iigante absorve significativamente, deve existir a contribuição de outro canal para a população do estado excitado 3ILtrans-stpy. A eficiência do fotoprocesso foi avaliada por meio da substituição dos ligantes NN e/ou L, e a diferença nos valores de Φreal entre os complexos deve estar relacionada principalmente com as distintas eficiências de cruzamento intersistemas. o fotoprocesso altera as propriedades fotofísicas desses complexos. Os isômeros trans apresentam fraca ou nenhuma emissão a 298 K, enquanto os fotoprodutos, fac-[Re(CO)3(NN)(cis-L)]+, apresentam intensa luminescência dominada pelo estado excitado 3MLCTRe→NN, que é sensivel à rigidez do meio. A reatividade fotoquímica dos pentacianoferratos(II) [Fe(CN)5 (NN)]3-, NN= 2aminobenzilamina (aba), 2-aminobenzamida (ab), 2-(dimetilaminometil)-3-hidroxipiridina (dmampy), 2-aminometilpiridina (ampy), 2-aminoetilpiridina (aepy) ou 2-(2metilaminoetil) piridina (maepy), também foi investigada. A irradiação desses complexos resulta na fotossubstituição do CN-, a qual só pode ser detectada quando o ligante possui um segundo grupo coordenante nas proximidades da esfera de coordenação. Os rendimentos quânticos da fotossubstituição são dependentes do comprimento de onda de irradiação (Φ313= 0,13 ± 0,01; Φ334= 0,091 ± 0,001; Φ365= 0,056 ± 0,002; Φ404= 0,022 ± 0,002; Φ436= 0,015 ± 0,001, por exemplo, para NN = aba) e indicam a existência de canais distintos pelos quais a fotorreação ocorre ou as diferentes eficiências de cruzamento intersistema para a população do estado excitado reativo. A eficiência do fotoprocesso também depende do Iigante utilizado (λirr= 365 nm: Φaba= 0,056, Φab= 0,14, Φampy= 0,046, Φaepy= 0,066, Φmaepy= 0,069 e Φdmampy= 0,12). Na série das diaminas, o rendimento quântico é maior para [Fe(CN)5(ab)]3-, que possui dois sítios para ocorrer o fechamento do anel. Na série das aminopiridinas, observa-se a influência do comprimento da cadeia na eficiência do fechamento do anel. A presença de metilas ligadas ao nitrogênio alifático deve ter pouca ou nenhuma influência na eficiência do fotoprocesso.
Resumo:
Chiral complexes formed by privileged phosphoramidites and silver triflate or silver benzoate are excellent catalysts for the general 1,3-dipolar cycloaddition between azomethine ylides generated from α-amino acid-derived imino esters and nitroalkenes affording with high dr the exo-cycloadducts 4,5-trans-2,5-cis-4-nitroprolinates in high ee at room temperature. In general, better results are obtained using silver rather than copper(II) complexes. In many cases the exo-cycloadducts can be obtained in enantiomerically pure form just after simple recrystallization. The mechanism and the justification of the experimentally observed stereodiscrimination of the process are supported by DFT calculations. These enantiomerically enriched exo-nitroprolinates can be used as reagents for the synthesis of nitropiperidines, by ester reduction and ring expansion, which are inhibitors of farnesyltransferase.
Resumo:
This thesis describes an investigation in which we compare Ni(0), Ni(I) and Ni(II) complexes containing 1,3-bis(diphenylphosphino)propane (dppp) as a phosphine ligand for their abilities to effect three types of cross-coupling reactions: Buchwald-Hartwig Amination, Heck-Mizoroki, and Suzuki-Miyaura cross-coupling reactions with different types of substrates. The Ni(0) complex Ni(dppp)2 is known and we have synthesized it via a new procedure involving zinc reduction of the known NiCl2(dppp) in the presence of an excess of dppp. The Ni(0) complex was characterized by NMR spectroscopy and X-ray crystallography. Since Ni(I) complexes of dppp seem unknown, we have synthesized what at this stage appear to be NiXdpppn/[NiX(dppp)n]x (X = Cl, Br, I; n = 1,2, x = 1, 2) by comproportionation of molar equivalents of Ni(dppp)2 and NiX2dppp, X= Cl, Br, I.
Resumo:
Metal ion binding properties of the immunosuppressant drug cyclosporin A have been investigated. Complexation studies in acetonitrile solution using H-1 NMR and CD spectroscopy yielded 1:1 metal-peptide binding constants (log(10)K) for potassium(l), < 1, magnesium(II), 4.8 +/- 0.2. and calcium(II), 5.0 +/- 1.0. The interaction of copper(II) with cyclosporin A in methanol was investigated with UV/visible and electron paramagnetic resonance (EPR) spectroscopy. No complexation of copper(II) was observed in neutral solution. In the presence of base, monomeric copper(II) complexes were detected. These results support the possibility that cyclosporin A has ionophoric properties for biologically important essential metal ions. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
New tin(IV) complexes of empirical formula, Sn(NNS)I-3 (NNS = anionic forms of the 2-quinolinecarboxaldehyde Schiff bases of S-methyl- and S-benzyldithiocarbazate) have been prepared and characterized by a variety of physico-chemical techniques. In the solid state, the Schiff bases exist as the thione tautomer but in solution and in the presence of tin(IV) iodide they convert to the thiol tautomer and coordinate to the tin atom in their deprotonated thiolate forms. The structures of the free ligand, Hqaldsbz and its triiodotin(IV) complex, [Sn(qaldsbz)I-3] have been determined by X-ray diffraction. The complex, [Sn(qaldsbz)I-3] has a distorted octahedral structure with the Schiff base coordinated to the tin atom as a uninegatively charged tridentate chelating agent via the quinoline nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. The three iodo ligands are coordinated meridionally to the tin atom. The distortion from an ideal octahedral geometry of [Sn(qaldsbz)I-3] is attributed to the restricted bite size of the tridentate Schiff base ligand. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
New tin(IV) complexes of empirical formula, Sn(SNNNS)I-2 (SNNNS = anionic form of the 2,6-diacetylpyridine Schiff bases of S-methyl- or S-benzyldithiocarbazate) have been prepared and characterized by a variety of physico-chemical techniques. The structure of Sn(dapsme)I-2 has been determined by single crystal X-ray crystallographic structural analysis. The complex has a seven-coordinate distorted pentagonal-bipyramidal geometry with the Schiff base coordinated to the tin(IV) ion as a dinegatively charged pentadentate chelating agent via the pyridine nitrogen atom, the two azomethine nitrogen atoms and the two thiolate sulfur atoms. The ligand occupies the equatorial plane and the iodo ligands are coordinated to the tin(IV) ion at axial positions. The distortion from an ideal pentagonal bipyramidal geometry is attributed to the restricted bite size of the pentadentate ligands. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
New mixed-ligand copper(II) complexes of empirical formulas [Cu(pysme)(sac) (CH3OH)] and [Cu(6mptsc)(sac)](2) have been synthesized and characterized by conductance, magnetic, IR and electronic spectroscopic techniques. X-ray crystallographic structure analyses of these complexes indicate that in both complexes the copper(II) ions adopt a five-coordinate distorted square-pyramidal geometry with an N3SO donor environment. The Schiff bases are coordinated to the copper(II) ions as tridentate NNS chelates via the pyridine nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. In the monomeric [Cu(pysme)(sac)(MeOH)] complex, the saccharinate anion acts as a monodentate ligand coordinating the copper(II) ion via the imino nitrogen atom whereas in the dimeric [Cu(6mptsc)(sac)](2) complex, the sac anion behaves as a bridging bidentate ligand providing the imino nitrogen donor atom to one of the copper(II) ions and the carbonyl oxygen as a weakly coordinated axial ligand atom to the other Cu(II) ion. In both complexes, the copper(II) ions have distorted square-pyramidal environments. The distortion from an ideal square-pyramidal geometry is attributed to the restricted bite angles of the planar tridentate ligand. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Enforcement of chirality upon a macrocyclic tetramine ligand structure by the introduction of an asymmetric pendent arm which does not significantly modify the macrocycle conformation has no significant effect upon the geometry of the coordination sphere of a bound metal. Where substitution engendering chirality does cause a change in the ligand conformation, in particular for a ligand of restricted stereochemistry, these effects can be much greater. Thus, conversion of 3,7-diazacycloheptane to a macrocycle via attachment of chiral sidearms and ring closure through a template reaction leads to cyclam derivatives with unusual coordination properties. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We have investigated the isomeric distribution and rearrangement of complexes of the type [CoXLn](2+,3+) (where X = Cl-, OH-, H2O, and L-n represents a pentadentate 13-, 14-, and 15-membered tetraaza or diaza-dithia (N-4 or N2S2) macrocycle bearing a pendant primary amine). The preparative procedures for chloro complexes produced almost exclusively kinetically preferred cis isomers (where the pendant primary amine is cis to the chloro ligand) that can be separated by careful cation-exchange chromatography. For L-13 and L-14 the so-called cis-V isomer is isolated as the kinetic product, and for L-15 the cis-VI form (an N-based diastereomer) is the preferred, while for the L-14(S) complex both cis-V and trans-I forms are obtained. All these complexes rearrange to form stable trans isomers in which the pendent primary amine is trans to the monodentate aqua or hydroxo ligand, depending on pH and the workup procedure. In total 11 different complexes have been studied. From these, two different trans isomers of [CoCIL14S](2+) have been characterized crystallographically for the first time in addition to a new structure of cis-V-[CoCIL14S](2+); all were isolated as their chloride perchlorate salts. Two additional isomers have been identified and characterized by NMR as reaction intermediates. The remaining seven forms correspond to the complexes already known, produced in preparative procedures. The kinetic, thermal, and baric activation parameters for all the isomerization reactions have been determined and involve large activation enthalpies and positive volumes of activation. Activation entropies indicate a very important degree of hydrogen bonding in the reactivity of the complexes, confirmed by density functional theory studies on the stability of the different isomeric forms. The isomerization processes are not simple and even some unstable intermediates have been detected and characterized as part of the above-mentioned 11 forms of the complexes. A common reaction mechanism for the isomerization reactions has been proposed for all the complexes derived from the observed kinetic and solution behavior.
Resumo:
The thesis is divided into four chapters. They are: introduction, experimental, results and discussion about the free ligands and results and discussion about the complexes. The First Chapter, the introductory chapter, is a general introduction to the study of solid state reactions. The Second Chapter is devoted to the materials and experimental methods that have been used for carrying out tile experiments. TIle Third Chapter is concerned with the characterisations of free ligands (Picolinic acid, nicotinic acid, and isonicotinic acid) by using elemental analysis, IR spectra, X-ray diffraction, and mass spectra. Additionally, the thermal behaviour of free ligands in air has been studied by means of thermogravimetry (TG), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC) measurements. The behaviour of thermal decomposition of the three free ligands was not identical Finally, a computer program has been used for kinetic evaluation of non-isothermal differential scanning calorimetry data according to a composite and single heating rate methods in comparison with the methods due to Ozawa and Kissinger methods. The most probable reaction mechanism for the free ligands was the Avrami-Erofeev equation (A) that described the solid-state nucleation-growth mechanism. The activation parameters of the decomposition reaction for free ligands were calculated and the results of different methods of data analysis were compared and discussed. The Fourth Chapter, the final chapter, deals with the preparation of cobalt, nickel, and copper with mono-pyridine carboxylic acids in aqueous solution. The prepared complexes have been characterised by analyses, IR spectra, X-ray diffraction, magnetic moments, and electronic spectra. The stoichiometry of these compounds was ML2x(H20), (where M = metal ion, L = organic ligand and x = water molecule). The environments of cobalt, nickel, and copper nicotinates and the environments of cobalt and nickel picolinates were octahedral, whereas the environment of copper picolinate [Cu(PA)2] was tetragonal. However, the environments of cobalt, nickel, and copper isonicotinates were polymeric octahedral structures. The morphological changes that occurred throughout the decomposition were followed by SEM observation. TG, DTG, and DSC measurements have studied the thermal behaviour of the prepared complexes in air. During the degradation processes of the hydrated complexes, the crystallisation water molecules were lost in one or two steps. This was also followed by loss of organic ligands and the metal oxides remained. Comparison between the DTG temperatures of the first and second steps of the dehydration suggested that the water of crystallisation was more strongly bonded with anion in Ni(II) complexes than in the complexes of Co(II) and Cu(II). The intermediate products of decomposition were not identified. The most probable reaction mechanism for the prepared complexes was also Avrami-Erofeev equation (A) characteristic of solid-state nucleation-growth mechanism. The tempemture dependence of conductivity using direct current was determined for cobalt, nickel, Cl.nd copper isonicotinates. An activation energy (ΔΕ), the activation energy (ΔΕ ) were calculated.The ternperature and frequency dependence of conductivity, the frequency dependence of dielectric constant, and the dielectric loss for nickel isonicotinate were determined by using altemating current. The value of s paralneter and the value of'density of state [N(Ef)] were calculated. Keyword Thermal decomposition, kinetic, electrical conduclion, pyridine rnono~ carboxylic acid, cOlnplex, transition metal compJex.
Resumo:
The study reports an advance in designing copper-based redox sensing MRI contrast agents. Although the data demonstrate that copper(II) complexes are not able to compete with lanthanoids species in terms of contrast, the redox-dependent switch between diamagnetic copper(I) and paramagnetic copper(II) yields a novel redox-sensitive contrast moiety with potential for reversibility.
Resumo:
Ce projet de recherche mené en collaboration industrielle avec St-Jean Photochimie Inc. / PCAS Canada vise le développement et la caractérisation de dérivés dipyrrométhène pour des applications dans le domaine du photovoltaïque. La quête du récoltage des photons se situant dans le proche-infrarouge a été au centre des modifications structurales explorées afin d’augmenter l’efficacité de conversion des cellules solaires de type organique et à pigments photosensibles. Trois familles de composés intégrant le motif dipyrrométhène ont été synthétisées et caractérisées du point de vue spectroscopique, électrochimique, structural ainsi que par modélisation moléculaire afin d’établir des relations structures-propriétés. La première famille comporte six azadipyrrométhènes au potentiel de coordination tétradentate sur des centres métalliques. Le développement d’une nouvelle voie synthétique asymétrique combinée à l’utilisation d’une voie symétrique classique ont permis d’obtenir l’ensemble des combinaisons de substituants possibles sur les aryles proximaux incluant les noyaux 2-hydroxyphényle, 2-méthoxyphényle et 2- pyridyle. La modulation du maximum d’absorption dans le rouge a pu être faite entre 598 et 619 nm. De même, la présence de groupements méthoxyle ou hydroxyle augmente l’absorption dans le violet (~410 nm) tel que démontré par modélisation. La caractérisation électrochimique a montré que les dérivés tétradentates étaient en général moins stables aux processus redox que leur contre-parti bidentate. La deuxième famille comporte dix dérivés BODIPY fusionnés de façon asymétrique en position [b]. L’aryle proximal a été modifié de façon systématique afin de mieux comprendre l’impact des substituents riches en électron et de la fusion de cycles aromatiques. De plus, ces dérivés ont été mis en relation avec une vaste série de composés analogues. Les résultats empiriques ont montré que les propriétés optoélectroniques de la plateforme sont régies par le degré de communication électronique entre l’aryle proximal, le pyrrole sur lequel il est attaché et le noyau indolique adjacent à ce dernier. Les maximums d’absorption dans le rouge sont modulables entre 547 et 628 nm et la fluorescence des composés se situe dans le proche- infrarouge. L’un des composé s’est révélé souhaitable pour une utilisation en photovoltaïque ainsi qu’à titre de sonde à pH. La troisième famille comporte cinq complexes neutres de RuII basés sur des polypyridines et portant un ligand azadipyrrométhène cyclométalé. Les composés ont montré une forte absorption de photons dans la région de 600 à 800 nm (rouge à proche- infrarouge) et qui a pu être étendue au-delà de 1100 nm dans le cas des dérivés portant un ligand terpyridine. L’analyse des propriétés optoélectroniques de façon empirique et théorique a montré un impact significatif de la cyclométalation et ouvert la voie pour leur étude en tant que photosensibilisateurs en OPV et en DSSC. La capacité d’un des complexes à photo-injecter un électron dans la bande de conduction du semi-conducteur TiO2 a été démontré en collaboration avec le groupe du Pr Gerald J. Meyer à University of North Carolina at Chapel Hill, premier pas vers une utilisation dans les cellules solaires à pigments photosensibles. La stabilité des complexes en solution s’est toutefois avérée problématique et des pistes de solutions sont suggérées basées sur les connaissances acquises dans le cadre de cette thèse.