986 resultados para Resonant photoemission
Resumo:
Active-clamp dc-dc converters are pulsewidth-modulated converters having two switches featuring zero-voltage switching at frequencies beyond 100 kHz. Generalized equivalent circuits valid for steady-state and dynamic performance have been proposed for the family of active-clamp converters. The active-clamp converter is analyzed for its dynamic behavior under current control in this paper. The steady-state stability analysis is presented. On account of the lossless damping inherent in the active-clamp converters, it appears that the stability region in the current-controlled active-clamp converters get extended for duty ratios, a little greater than 0.5 unlike in conventional hard-switched converters. The conventional graphical approach fails to assess the stability of current-controlled active-clamp converters, due to the coupling between the filter inductor current and resonant inductor current. An analysis that takes into account the presence of the resonant elements is presented to establish the condition for stability. This method correctly predicts the stability of the current-controlled active-clamp converters. A simple expression for the maximum duty cycle for subharmonic-free operation is obtained. The results are verified experimentally.
Resumo:
We present low-temperature electrical transport experiments in five field-effect transistor devices consisting of monolayer, bilayer, and trilayer MoS(2) films, mechanically exfoliated onto Si/SiO(2) substrate. Our experiments reveal that the electronic states In all films are localized well up to room temperature over the experimentally accessible range of gate voltage. This manifests in two-dimensional (2D) variable range hopping (VRH) at high temperatures, while below similar to 30 K, the conductivity displays oscillatory structures In gate voltage arising from resonant tunneling at the localized sites. From the correlation energy (T(0)) of VRH and gate voltage dependence of conductivity, we suggest that Coulomb potential from trapped charges In the substrate is the dominant source of disorder in MoS(2) field-effect devices, which leads to carrier localization, as well.
Resumo:
We describe here a minimal theory of tight-binding electrons moving on the square planar Cu lattice of the hole-doped cuprates and mixed quantum mechanically with their own Cooper pairs. The superconductivity occurring at the transition temperature T(c) is the long-range, d-wave symmetry phase coherence of these Cooper pairs. Fluctuations, necessarily associated with incipient long-range superconducting order, have a generic large-distance behavior near T(c). We calculate the spectral density of electrons coupled to such Cooper-pair fluctuations and show that features observed in angle resolved photoemission spectroscopy (ARPES) experiments on different cuprates above T(c) as a function of doping and temperature emerge naturally in this description. These include ``Fermi arcs'' with temperature-dependent length and an antinodal pseudogap, which fills up linearly as the temperature increases toward the pseudogap temperature. Our results agree quantitatively with experiment. Below T(c), the effects of nonzero superfluid density and thermal fluctuations are calculated and compared successfully with some recent ARPES experiments, especially the observed bending or deviation of the superconducting gap from the canonical d-wave form.
Resumo:
In this paper, we report on the concept and the design principle of ultrafast Raman loss spectroscopy (URLS) as a structure-elucidating tool. URLS is an analogue of stimulated Raman scattering (SRS) but more sensitive than SRS with better signal-to-noise ratio. It involves the interaction of two laser sources, namely, a picosecond (ps) Raman pump pulse and a white-light (WL) continuum, with a sample, leading to the generation of loss signals on the higher energy (blue) side with respect to the wavelength of the Raman pump unlike the gain signal observed on the lower energy (red) side in SRS. These loss signals are at least 1.5 times more intense than the SRS signals. An experimental study providing an insight into the origin of this extra intensity in URLS as compared to SRS is reported. Furthermore, the very requirement of the experimental protocol for the signal detection to be on the higher energy side by design eliminates the interference from fluorescence, which appears on the red side. Unlike CARS, URLS signals are not precluded by the non-resonant background and, being a self-phase-matched process, URLS is experimentally easier. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
When radiation of sufficiently high energy is incident on the surface of a semiconductor photocathode, electrons are excited from the valence band to the conduction band and these may contribute to the photocurrent. The photocurrent in a single-layer cathode is found to be small, because of collisions within the cathode material, the electron affinity condition, etc. It is observed that when a thin layer of n-type cesium antimonide (Cs3Sb) is deposited over a p-type layer of sodium potassium antimonide (Na2KSb), there occurs a sharp rise in the photocurrent. The causes for the dramatic increase in the photocurrent obtainable from a sodium potassium antimonide cathode, by depositing a thin layer of cesium antimonide are analyzed in this article. It has been shown that the interface between sodium potassium antimonide and cesium antimonide can result in lowering of the electron affinity to a level below the bottom of the conduction band of sodium potassium antimonide. The drift field that arises at the heterointerface enables the electrons to reach the surface, leading to the emission of almost all the photogenerated electrons within the cathode. The processes involved in photoemission from such a double-layer cathode are examined from a theoretical point of view. The spectral response of the two-layer cathode is also found to be better than that of a single-layer cathode.
Resumo:
High voltage power supplies for radar applications are investigated, which are subjected to pulsed load (125 kHz and 10% duty cycle) with stringent specifications (<0.01% regulation, efficiency>85%, droop<0.5 V/micro-sec.). As good regulation and stable operation requires the converter to be switched at much higher frequency than the pulse load frequency, transformer poses serious problems of insulation failure and higher losses. This paper proposes a methodology to tackle the problems associated with this type of application. Synchronization of converter switching with load pulses enables the converter to switch at half the load switching frequency. Low switching frequency helps in ensuring safety of HV transformer insulation and reduction of losses due to skin and proximity effect. Phase-modulated series resonant converter with ZVS is used as the power converter.
Resumo:
The band offsets in InN/p-Si heterojunctions are determined by high resolution x-ray photoemission spectroscopy. The valence band of InN is found to be 1.39 eV below that of Si. Given the bandgap of 0.7 eV for InN, a type-III heterojunction with a conduction band offset of 1.81 eV was found. Agreement between the simulated and experimental data obtained from the heterojunction spectra was found to be excellent, establishing that the method of determination was accurate. The charge neutrality level (CNL) model provided a reasonable description of the band alignment of the InN/p-Si interface and a change in the interface dipole by 0.06 eV was observed for InN/p-Si interface.
Resumo:
Lagrange's equation is utilized to show the analogy of a lossless microwave cavity resonator with the conventional LC network. A brief discussion on the resonant frequencies of a microwave cavity resonator and the two degenerate companion modes H01 and E11 appearing in a cavity is given. The first order perturbation theory of a small deformation of the wall of a cavity is discussed. The effects of perturbation, such as the change in the resonant frequency and the Q of a cavity, the change in the electromagnetic field configurations and hence mixing of modes are also discussed. An expression for the coupling coefficient between the two degenerate modes H01 and E11 is derived with the help of the field equations. Results indicate that in the absence of perturbation the above two degenerate modes can co-exist without losing their individual identities. Several applications of the perturbation theory, such as the measurement of the dielectric properties of matter, study of ferromagnetic resonance, etc., are described.
Resumo:
This study concerns the flow-acoustic characterisation of a cavity-based combustor configuration. A well-validated numerical tool has been used to simulate the unsteady, two-dimensional reacting flow. Initially, a conventional flow over a cavity with dimensions and conditions corresponding to a compact cavity combustor was studied. Cavity mass injections in the form of fuel and air injections required for trapped vortex formation were then employed and the resonance features of this configuration were studied. The results indicate that the cavity depth mode resonance mechanism is dominant at the conditions studied in this work and that the oscillation frequencies do not change with cavity air injection. This observation is important since it implies that the only important variable which can alter resonant frequencies is the cavity depth. With combustion, the pressure oscillation amplitude was observed to increases significantly due to periodic entrainment of the cavity air jet and fluctuation of fuel-air mixture composition to produce highly fluctuating heat-release rates. The underlying mechanisms of the unsteady flow in the cavity combustor identified in this study indicate the strong dependence of the acoustics on the cavity injection strategies.
Resumo:
Investigations were carried out on the ambient condition oxidation of self-assembled, fairly uniform indium nitride (InN) quantum dots (QDs) fabricated on p-Si substrates. Incorporation of oxygen in to the outer shell of the QDs was confirmed by the results of transmission electron microscopy (TEM), X-ray photoemission spectroscopy (XPS). As a consequence, a weak emission at high energy (similar to 1.03?eV) along with a free excitonic emission (0.8?eV) was observed in the photoluminescence spectrum. The present results confirm the incorporation of oxygen into the lattice of the outer shell of InN QDs, affecting their emission properties. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Photoemission spectroscopy offers the unique possibility of mapping out the electronic structure of the occupied electron states. However, the extreme surface sensitivity of this technique ensures that only the surface and the near-surface regions of any sample are probed. An important question arises in this context—Is the electronic structure of the surface region the same as that of the bulk? We address this issue using two different series of vanadium oxides, Ca1−xSrxVO3 and La1−xCaxVO3. Our results clearly establish that the electronic structure of the surface region is drastically different from that of the bulk in both these cases. We provide a method to separate the two contributions: one arising from the near-surface region and the other representative of the bulk. This separation allows us to deduce some very unusual behaviors of the electronic structures in these systems.
Resumo:
We have investigated the electronic structure of a double perovskite Ca2FeReO6 using photoemission spectroscopy and LDA+U bandstructure calculations. Small spectral weight at the Fermi level observed above the metal–insulator transition temperature, gradually disappears with decreasing T, forming a small (≤50 meV) energy gap. To reproduce this small energy gap, we require a very large effective U (Ueff) for Re (4 eV) in addition to Ueff of 4 eV for Fe. From simple calculations in terms of the ionic radii, we demonstrate that the Fe–Re bandwidth is smaller than that of Fe–Mo in Ca2FeMoO6, which should yield a strong electron correlation in the Re 5d bands.
Resumo:
The realistic estimation of the dynamic characteristics for a known set of loading conditions continues to be difficult despite many contributions in the past. The design of a machine foundation is generally made on the basis of limiting amplitude or resonant frequency. These parameters are in turn dependent on the dynamic characteristics of soil viz., the shear modulus/stiffness and damping. The work reported herein is an attempt to relate statistically the shear modulus of a soil to its resonant amplitude under a known set of static and dynamic loading conditions as well as wide ranging soil conditions. The two parameters have been statistically related with a good correlation coefficient and low standard error of estimate.
Resumo:
In0.2Ga0.8N layers were directly grown on Si(111) substrate by plasma-assisted molecular beam epitaxy (PAMBE). Structural characteristics of the as-grown InGaN epilayers were evaluated high resolution X-ray diffraction and composition of InGaN was estimated from photoluminescence spectra using the standard Vegard's law. High-resolution X-ray photoemission spectroscopy measurements were used to determine the band offset of wurtzite-In0.2Ga0.8N/Si(111) heterojunctions. The valence band of InGaN is found to be 2.08 +/- 0.04 eV below that of Si. The conduction band offset (CBO) of InGaN/Si heterojunction is found similar to 0.74 eV and a type-II heterojunction. (C) 2012 The Japan Society of Applied Physics
Resumo:
Hexagonal Ge3N4 layer was prepared on Ge surface by in situ direct atomic source nitridation and it is promising buffer layer to grow GaN on Ge (111). The valence band offset (VBO) of GaN/Ge3N4/Ge heterojunctions is determined by X-ray photoemission spectroscopy. The valence band (VB) of Ge3N4 is found to be 0.38?+/-?0.04?eV above the GaN valance band and 1.14?+/-?0.04?eV below the Ge. The GaN/Ge3N4 and Ge3N4/Ge are found type-II and type-I heterojunctions, respectively. The exact measurements of the VBO and conduction band offset (CBO) are important for use of GaN/Ge3N4/Ge (111) heterosystems.