931 resultados para Real-time PCR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PROFIBUS is an international standard (IEC 61158, EN 50170) for factory-floor communications, with several thousands of installations worldwide. Taking into account the increasing need for mobile devices in industrial environments, one obvious solution is to extend traditional wired PROFIBUS networks with wireless capabilities. In this paper, we outline the major aspects of a hybrid wired/wireless PROFIBUS-based architecture, where most of the design options were made in order to guarantee the real-time behaviour of the overall network. We also introduce the timing unpredictability problems resulting from the co-existence of heterogeneous physical media in the same network. However, the major focus of this paper is on how to guarantee real-time communications in such a hybrid network, where nodes (and whole segments) can move between different radio cells (inter-cell mobility). Assuming a simple mobility management mechanism based on mobile nodes performing periodic radio channel assessment and switching, we propose a methodology to compute values for specific parameters that enable an optimal (minimum) and bounded duration of the handoff procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a dynamic scheduler that supports the coexistence of guaranteed and non-guaranteed bandwidth servers to efficiently handle soft-tasks’ overloads by making additional capacity available from two sources: (i) residual capacity allocated but unused when jobs complete in less than their budgeted execution time; (ii) stealing capacity from inactive non-isolated servers used to schedule best-effort jobs. The effectiveness of the proposed approach in reducing the mean tardiness of periodic jobs is demonstrated through extensive simulations. The achieved results become even more significant when tasks’ computation times have a large variance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modelling the fundamental performance limits of wireless sensor networks (WSNs) is of paramount importance to understand the behaviour of WSN under worst case conditions and to make the appropriate design choices. In that direction, this paper contributes with a methodology for modelling cluster tree WSNs with a mobile sink. We propose closed form recurrent expressions for computing the worst case end to end delays, buffering and bandwidth requirements across any source-destination path in the cluster tree assuming error free channel. We show how to apply our theoretical results to the specific case of IEEE 802.15.4/ZigBee WSNs. Finally, we demonstrate the validity and analyze the accuracy of our methodology through a comprehensive experimental study, therefore validating the theoretical results through experimentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks including sensor networks. It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When enabling its beacon mode, the protocol makes possible real-time guarantees by using its Guaranteed Time Slot (GTS) mechanism. This paper analyzes the performance of the GTS allocation mechanism in IEEE 802.15.4. The analysis gives a full understanding of the behavior of the GTS mechanism with regards to delay and throughput metrics. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters. We then evaluate the delay bounds guaranteed by an allocation of a GTS using Network Calculus formalism. Finally, based on the analytic results, we analyze the impact of the IEEE 802.15.4 parameters on the throughput and delay bound guaranteed by a GTS allocation. The results of this work pave the way for an efficient dimensioning of an IEEE 802.15.4 cluster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dependability is a critical factor in computer systems, requiring high quality validation & verification procedures in the development stage. At the same time, digital devices are getting smaller and access to their internal signals and registers is increasingly complex, requiring innovative debugging methodologies. To address this issue, most recent microprocessors include an on-chip debug (OCD) infrastructure to facilitate common debugging operations. This paper proposes an enhanced OCD infrastructure with the objective of supporting the verification of fault-tolerant mechanisms through fault injection campaigns. This upgraded on-chip debug and fault injection (OCD-FI) infrastructure provides an efficient fault injection mechanism with improved capabilities and dynamic behavior. Preliminary results show that this solution provides flexibility in terms of fault triggering and allows high speed real-time fault injection in memory elements

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fault injection is frequently used for the verification and validation of dependable systems. When targeting real time microprocessor based systems the process becomes significantly more complex. This paper proposes two complementary solutions to improve real time fault injection campaign execution, both in terms of performance and capabilities. The methodology is based on the use of the on-chip debug mechanisms present in modern electronic devices. The main objective is the injection of faults in microprocessor memory elements with minimum delay and intrusiveness. Different configurations were implemented and compared in terms of performance gain and logic overhead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid increase in the use of microprocessor-based systems in critical areas, where failures imply risks to human lives, to the environment or to expensive equipment, significantly increased the need for dependable systems, able to detect, tolerate and eventually correct faults. The verification and validation of such systems is frequently performed via fault injection, using various forms and techniques. However, as electronic devices get smaller and more complex, controllability and observability issues, and sometimes real time constraints, make it harder to apply most conventional fault injection techniques. This paper proposes a fault injection environment and a scalable methodology to assist the execution of real-time fault injection campaigns, providing enhanced performance and capabilities. Our proposed solutions are based on the use of common and customized on-chip debug (OCD) mechanisms, present in many modern electronic devices, with the main objective of enabling the insertion of faults in microprocessor memory elements with minimum delay and intrusiveness. Different configurations were implemented starting from basic Components Off-The-Shelf (COTS) microprocessors, equipped with real-time OCD infrastructures, to improved solutions based on modified interfaces, and dedicated OCD circuitry that enhance fault injection capabilities and performance. All methodologies and configurations were evaluated and compared concerning performance gain and silicon overhead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A área da simulação computacional teve um rápido crescimento desde o seu apareciment, sendo actualmente uma das ciências de gestão e de investigação operacional mais utilizadas. O seu princípio baseia-se na replicação da operação de processos ou sistemas ao longo de períodos de tempo, tornando-se assim uma metodologia indispensável para a resolução de variados problemas do mundo real, independentemente da sua complexidade. Das inúmeras áreas de aplicação, nos mais diversos campos, a que mais se destaca é a utilização em sistemas de produção, onde o leque de aplicações disponível é muito vasto. A sua aplicação tem vindo a ser utilizada para solucionar problemas em sistemas de produção, uma vez que permite às empresas ajustar e planear de uma maneira rápida, eficaz e ponderada as suas operações e os seus sistemas, permitindo assim uma rápida adaptação das mesmas às constantes mudanças das necessidades da economia global. As aplicações e packages de simulação têm seguindo as tendências tecnológicas pelo que é notório o recurso a tecnologias orientadas a objectos para o desenvolvimento das mesmas. Este estudo baseou-se, numa primeira fase, na recolha de informação de suporte aos conceitos de modelação e simulação, bem como a respectiva aplicação a sistemas de produção em tempo real. Posteriormente centralizou-se no desenvolvimento de um protótipo de uma aplicação de simulação de ambientes de fabrico em tempo real. O desenvolvimento desta ferramenta teve em vista eventuais fins pedagógicos e uma utilização a nível académico, sendo esta capaz de simular um modelo de um sistema de produção, estando também dotada de animação. Sem deixar de parte a possibilidade de integração de outros módulos ou, até mesmo, em outras plataformas, houve ainda a preocupação acrescida de que a sua implementação recorresse a metodologias de desenvolvimento orientadas a objectos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To increase the amount of logic available to the users in SRAM-based FPGAs, manufacturers are using nanometric technologies to boost logic density and reduce costs, making its use more attractive. However, these technological improvements also make FPGAs particularly vulnerable to configuration memory bit-flips caused by power fluctuations, strong electromagnetic fields and radiation. This issue is particularly sensitive because of the increasing amount of configuration memory cells needed to define their functionality. A short survey of the most recent publications is presented to support the options assumed during the definition of a framework for implementing circuits immune to bit-flips induction mechanisms in memory cells, based on a customized redundant infrastructure and on a detection-and-fix controller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fault injection is frequently used for the verification and validation of the fault tolerant features of microprocessors. This paper proposes the modification of a common on-chip debugging (OCD) infrastructure to add fault injection capabilities and improve performance. The proposed solution imposes a very low logic overhead and provides a flexible and efficient mechanism for the execution of fault injection campaigns, being applicable to different target system architectures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new generations of SRAM-based FPGA (field programmable gate array) devices are the preferred choice for the implementation of reconfigurable computing platforms intended to accelerate processing in real-time systems. However, FPGA's vulnerability to hard and soft errors is a major weakness to robust configurable system design. In this paper, a novel built-in self-healing (BISH) methodology, based on run-time self-reconfiguration, is proposed. A soft microprocessor core implemented in the FPGA is responsible for the management and execution of all the BISH procedures. Fault detection and diagnosis is followed by repairing actions, taking advantage of the dynamic reconfiguration features offered by new FPGA families. Meanwhile, modular redundancy assures that the system still works correctly

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consider the problem of scheduling a task set τ of implicit-deadline sporadic tasks to meet all deadlines on a t-type heterogeneous multiprocessor platform where tasks may access multiple shared resources. The multiprocessor platform has m k processors of type-k, where k∈{1,2,…,t}. The execution time of a task depends on the type of processor on which it executes. The set of shared resources is denoted by R. For each task τ i , there is a resource set R i ⊆R such that for each job of τ i , during one phase of its execution, the job requests to hold the resource set R i exclusively with the interpretation that (i) the job makes a single request to hold all the resources in the resource set R i and (ii) at all times, when a job of τ i holds R i , no other job holds any resource in R i . Each job of task τ i may request the resource set R i at most once during its execution. A job is allowed to migrate when it requests a resource set and when it releases the resource set but a job is not allowed to migrate at other times. Our goal is to design a scheduling algorithm for this problem and prove its performance. We propose an algorithm, LP-EE-vpr, which offers the guarantee that if an implicit-deadline sporadic task set is schedulable on a t-type heterogeneous multiprocessor platform by an optimal scheduling algorithm that allows a job to migrate only when it requests or releases a resource set, then our algorithm also meets the deadlines with the same restriction on job migration, if given processors 4×(1+MAXP×⌈|P|×MAXPmin{m1,m2,…,mt}⌉) times as fast. (Here MAXP and |P| are computed based on the resource sets that tasks request.) For the special case that each task requests at most one resource, the bound of LP-EE-vpr collapses to 4×(1+⌈|R|min{m1,m2,…,mt}⌉). To the best of our knowledge, LP-EE-vpr is the first algorithm with proven performance guarantee for real-time scheduling of sporadic tasks with resource sharing on t-type heterogeneous multiprocessors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Task scheduling is one of the key mechanisms to ensure timeliness in embedded real-time systems. Such systems have often the need to execute not only application tasks but also some urgent routines (e.g. error-detection actions, consistency checkers, interrupt handlers) with minimum latency. Although fixed-priority schedulers such as Rate-Monotonic (RM) are in line with this need, they usually make a low processor utilization available to the system. Moreover, this availability usually decreases with the number of considered tasks. If dynamic-priority schedulers such as Earliest Deadline First (EDF) are applied instead, high system utilization can be guaranteed but the minimum latency for executing urgent routines may not be ensured. In this paper we describe a scheduling model according to which urgent routines are executed at the highest priority level and all other system tasks are scheduled by EDF. We show that the guaranteed processor utilization for the assumed scheduling model is at least as high as the one provided by RM for two tasks, namely 2(2√−1). Seven polynomial time tests for checking the system timeliness are derived and proved correct. The proposed tests are compared against each other and to an exact but exponential running time test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperspectral instruments have been incorporated in satellite missions, providing large amounts of data of high spectral resolution of the Earth surface. This data can be used in remote sensing applications that often require a real-time or near-real-time response. To avoid delays between hyperspectral image acquisition and its interpretation, the last usually done on a ground station, onboard systems have emerged to process data, reducing the volume of information to transfer from the satellite to the ground station. For this purpose, compact reconfigurable hardware modules, such as field-programmable gate arrays (FPGAs), are widely used. This paper proposes an FPGA-based architecture for hyperspectral unmixing. This method based on the vertex component analysis (VCA) and it works without a dimensionality reduction preprocessing step. The architecture has been designed for a low-cost Xilinx Zynq board with a Zynq-7020 system-on-chip FPGA-based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low-cost embedded systems, opening perspectives for onboard hyperspectral image processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of demand response programs enables the adequate use of resources of small and medium players, bringing high benefits to the smart grid, and increasing its efficiency. One of the difficulties to proceed with this paradigm is the lack of intelligence in the management of small and medium size players. In order to make demand response programs a feasible solution, it is essential that small and medium players have an efficient energy management and a fair optimization mechanism to decrease the consumption without heavy loss of comfort, making it acceptable for the users. This paper addresses the application of real-time pricing in a house that uses an intelligent optimization module involving artificial neural networks.