941 resultados para Randomly amplified polymorphic DNA (RAPD)
Resumo:
The 'human topoisomerase I (htopoI) damage response' was reported to be triggered by various kinds of DNA lesions. Also, a high and persistent level of htopoI cleavage complexes correlated with apoptosis. In the present study, we demonstrate that DNA damage-independent induction of cell death using colcemid and tumor necrosis factor is also accompanied by a strong htopoI response that correlates with the onset of apoptotic hallmarks. Consequently, these results suggest that htopoI cleavage complex formation may be caused by signaling pathways independent of the kind of cellular stress. Thus, protein interactions or signaling cascades induced by DNA damage or cellular stress might lead to the formation of stabilized cleavage complexes rather than the DNA lesion itself. Finally, we show that p53 not only plays a key role in the regulation of the htopoI response to UV-C irradiation but also to treatment with colcemid.
Resumo:
Recent studies suggest that genetic and environmental factors do not account for all the schizophrenia risk and epigenetics also plays a role in disease susceptibility. DNA methylation is a heritable epigenetic modification that can regulate gene expression. Genome-Wide DNA methylation analysis was performed on post-mortem human brain tissue from 24 patients with schizophrenia and 24 unaffected controls. DNA methylation was assessed at over 485 000 CpG sites using the Illumina Infinium Human Methylation450 Bead Chip. After adjusting for age and post-mortem interval (PMI), 4 641 probes corresponding to 2 929 unique genes were found to be differentially methylated. Of those genes, 1 291 were located in a CpG island and 817 were in a promoter region. These include NOS1, AKT1, DTNBP1, DNMT1, PPP3CC and SOX10 which have previously been associated with schizophrenia. More than 100 of these genes overlap with a previous DNA methylation study of peripheral blood from schizophrenia patients in which 27 000 CpG sites were analysed. Unsupervised clustering analysis of the top 3 000 most variable probes revealed two distinct groups with significantly more people with schizophrenia in cluster one compared to controls (p = 1.74x10-4). The first cluster was composed of 88% of patients with schizophrenia and only 12% controls while the second cluster was composed of 27% of patients with schizophrenia and 73% controls. These results strongly suggest that differential DNA methylation is important in schizophrenia etiology and add support for the use of DNA methylation profiles as a future prognostic indicator of schizophrenia.
Resumo:
Six consecutively hatched cohorts and one cohort of pre-hatch eggs of farmed barramundi (Lates calcarifer) from south Australia were examined for Chlamydia-like organisms associated with epitheliocystis. To identify and characterise the bacteria, 59 gill samples and three pre-hatch egg samples were processed for histology, in situ hybridisation and 16S rRNA amplification, sequencing and comprehensive phylogenetic analysis. Cases of epitheliocystis were observed microscopically and characterised by membrane-enclosed basophilic cysts filled with a granular material that caused hypertrophy of the epithelial cells. In situ hybridisation with a Chlamydiales-specific probe lead to specific labelling of the epitheliocystis inclusions within the gill epithelium. Two distinct but closely related 16S rRNA chlamydial sequences were amplified from gill DNA across the seven cohorts, including from pre-hatch eggs. These genotype sequences were found to be novel, sharing 97.1 - 97.5% similarity to the next closest 16S rRNA sequence, Ca. Similichlamydia latridicola, from Australian striped trumpeter. Comprehensive phylogenetic analysis of these genotype sequences against representative members of the Chlamydiales order and against other epitheliocystis agents revealed these Chlamydia-like organisms to be novel and taxonomically placed them within the recently proposed genus Ca. Similichlamydia. Following Fredricks and Relman's molecular postulates and based on these observations, we propose the epitheliocystis agents of barramundi to be known as "Candidatus Similichlamydia laticola" (sp. nov.).
Resumo:
Three cohorts of farmed yellowtail kingfish (Seriola lalandi) from South Australia were examined for Chlamydia-like organisms associated with epitheliocystis. To characterize the bacteria, 38 gill samples were processed for histopathology, electron microscopy, and 16S rRNA amplification, sequencing, and phylogenetic analysis. Microscopically, the presence of membrane-enclosed cysts was observed within the gill lamellae. Also observed was hyperplasia of the epithelial cells with cytoplasmic vacuolization and fusion of the gill lamellae. Transmission electron microscopy revealed morphological features of the reticulate and intermediate bodies typical of members of the order Chlamydiales. A novel 1,393-bp 16S chlamydial rRNA sequence was amplified from gill DNA extracted from fish in all cohorts over a 3-year period that corresponded to the 16S rRNA sequence amplified directly from laser-dissected cysts. This sequence was only 87% similar to the reported "Candidatus Piscichlamydia salmonis" (AY462244) from Atlantic salmon and Arctic charr. Phylogenetic analysis of this sequence against 35 Chlamydia and Chlamydia-like bacteria revealed that this novel bacterium belongs to an undescribed family lineage in the order Chlamydiales. Based on these observations, we propose this bacterium of yellowtail kingfish be known as "Candidatus Parilichlamydia carangidicola" and that the new family be known as "Candidatus Parilichlamydiaceae."
Resumo:
The avenues through which communities and community organisations raise awareness about the issues they face and how they agitate for change have developed rapidly in the past ten years; and digital technology has provided community activists with the means to quickly create and widely disseminate stories. Perhaps the most influential and wide reaching of recent innovations in storytelling has been transmedia storytelling. This article explores a new breed of projects that utilise recognisable conventions of transmedia storytelling and borrow elements from other forms of storytelling that predate transmedia, such as digital storytelling and documentary film making. In addition to being hybrid in form these projects are independent and solely focused on raising awareness about particular social issues or telling the stories of marginalized groups, who otherwise do not have a voice in the public sphere.
Resumo:
Some initial EUVL patterning results for polycarbonate based non-chemically amplified resists are presented. Without full optimization the developer a resolution of 60 nm line spaces could be obtained. With slight overexposure (1.4 × E0) 43.5 nm lines at a half pitch of 50 nm could be printed. At 2x E0 a 28.6 nm lines at a half pitch of 50 nm could be obtained with a LER that was just above expected for mask roughness. Upon being irradiated with EUV photons, these polymers undergo chain scission with the loss of carbon dioxide and carbon monoxide. The remaining photoproducts appear to be non-volatile under standard EUV irradiation conditions, but do exhibit increased solubility in developer compared to the unirradiated polymer. The sensitivity of the polymers to EUV light is related to their oxygen content and ways to increase the sensitivity of the polymers to 10 mJ cm-2 is discussed.
Resumo:
The binding kinetics of NF-kappaB p50 to the Ig-kappaB site and to a DNA duplex with no specific binding site were determined under varying conditions of potassium chloride concentration using a surface plasmonresonance biosensor. Association and dissociation rate constants were measured enabling calculation of the dissociation constants. Under previously established high affinity buffer conditions, the k a for both sequences was in the order of 10(7) M-1s-1whilst the k d values varied 600-fold in a sequence-dependent manner between 10(-1) and 10(-4 )s-1, suggesting that the selectivity of p50 for different sequences is mediated primarily through sequence-dependent dissociation rates. The calculated K D value for the Ig-kappaB sequence was 16 pM, whilst the K D for the non-specific sequence was 9.9 nM. As the ionic strength increased to levels which are closer to that of the cellular environment, the binding of p50 to the non-specific sequence was abolished whilst the specific affinity dropped to nanomolar levels. From these results, a mechanism is proposed in which p50 binds specific sequences with high affinity whilst binding non-specific sequences weakly enough to allow efficient searching of the DNA.
Resumo:
The effect of two different DNA minor groove binding molecules, Hoechst 33258 and distamycin A, on the binding kinetics of NF-κB p50 to three different specific DNA sequences was studied at various salt concentrations. Distamycin A was shown to significantly increase the dissociation rate constant of p50 from the sequences PRDII (5′-GGGAAATTCC-3′) and Ig-κ B (5′-GGGACTTTCC-3′) but had a negligible effect on the dissociation from the palindromic target-κB binding site (5′-GGGAATTCCC-3′). By comparison, the effect of Hoechst 33258 on binding of p50 to each sequence was found to be minimal. The dissociation rates for the protein–DNA complexes increased at higher potassium chloride concentrations for the PRDII and Ig-κB binding motifs and this effect was magnified by distamycin A. In contrast, p50 bound to the palindromic target-κB site with a much higher intrinsic affinity and exhibited a significantly reduced salt dependence of binding over the ionic strength range studied, retaining a KD of less than 10 pM at 150 mM KCl. Our results demonstrate that the DNA binding kinetics of p50 and their salt dependence is strongly sequence-dependent and, in addition, that the binding of p50 to DNA can be influenced by the addition of minor groove-binding drugs in a sequence-dependent manner.
Resumo:
Cold-active lipases are of significant interest as biocatalysts in industrial processes. We have identified a lipase that displayed activity towards long carbon-chain-p-nitrophenyl substrates (C12–C18) at 25 °C from the culture supernatant of an Antarctic Penicillium expansum strain assigned P. expansum SM3. Zymography revealed a protein band of around 30 kDa with activity towards olive oil. DNA fragments of a lipase gene designated as lipPE were isolated from the genomic DNA of P. expansum SM3 by genomic walking PCR. Subsequently, the complete genomic lipPE gene was amplified using gene-specific primers designed from the 5′- and 3′-regions. Reverse transcription PCR was used to amplify the lipPE cDNA. The deduced amino acid sequence consisted of 285 residues that included a predicted signal peptide. Three peptides identified by LC/MS/MS analysis of the proteins in the culture supernatant of P. expansum were also present in the deduced amino acid sequence of the lipPE gene suggesting that this gene encoded the lipase identified by initial zymogram activity analysis. Full analysis of the nucleotide and the deduced amino acid sequences indicated that the lipPE gene encodes a novel P. expansum lipase. The lipPE gene was expressed in E. coli for further characterization of the enzyme with a view of assessing its suitability for industrial applications.
Resumo:
A DNA sequence between two legumin genes in Pisum is a member of the copia-like class of retrotransposons and represents one member of a polymorphic and heterogeneous dispersed repeated sequence family in Pisum. This sequence can be exploited in genetic studies either by RFLP analysis where several markers can be scored together, or the segregation of individual elements can be followed after PCR amplification of specific members.
Resumo:
To determine whether Sertoli cells influence DNA synthesis by rat peritubular myoid cells in vitro, the effects of Sertoli cells on [3H]thymidine incorporation by peritubular myoid cells in a coculture situation were examined. Incubation of testicular peritubular myoid cells with Sertoli cells in coculture induced a significant increase in [3H]thymidine incorporation by peritubular myoid cells. This indicates a cell-cell cooperation between Sertoli and peritubular myoid cells in the testis in terms of DNA synthesis. Secreted factors from Sertoli cells, as tested in a parabiotic culture situation, also increased [3H]thymidine incorporation by peritubular myoid cells. Moreover, in terms of total cellular protein, cocultures of Sertoli cells and peritubular myoid cells resulted in a significant increase when compared with the monocultures, and this coculture effect substituted for the stimulatory response of serum on peritubular myoid cell monoculture. This study investigated the cooperative role of Sertoli cells and peritubular myoid cells in paracrine regulation of testicular functions.
Resumo:
The capacity to identify an unknown organism using the DNA sequence from a single gene has many applications. These include the development of biodiversity inventories (Janzen et al. 2005), forensics (Meiklejohn et al. 2011), biosecurity (Armstrong and Ball 2005), and the identification of cryptic species (Smith et al. 2006). The popularity and widespread use (Teletchea 2010) of the DNA barcoding approach (Hebert et al. 2003), despite broad misgivings (e.g., Smith 2005; Will et al. 2005; Rubinoff et al. 2006), attest to this. However, one major shortcoming to the standard barcoding approach is that it assumes that gene trees and species trees are synonymous, an assumption that is known not to hold in many cases (Pamilo and Nei 1988; Funk and Omland 2003). Biological processes that violate this assumption include incomplete lineage sorting and interspecific hybridization (Funk and Omland 2003). Indeed, simulation studies indicate that the concatenation approach (in which these two processes are ignored) can lead to statistically inconsistent estimation of the species tree (Kubatko and Degnan 2007)...
Resumo:
The SOS screen, as originally described by Perkins et al. (1999), was setup with the aim of identifying Arabidopsis functions that might potentially be involved in the DNA metabolism. Such functions, when expressed in bacteria, are prone to disturb replication and thus trigger the SOS response. Consistently, expression of AtRAD51 and AtDMC1 induced the SOS response in bacteria, even affecting E. coli viability. 100 SOS-inducing cDNAs were isolated from a cDNA library constructed from an Arabidopsis cell suspension that was found to highly express meiotic genes. A large proportion of these SOS+ candidates are clearly related to the DNA metabolism, others could be involved in the RNA metabolism, while the remaining cDNAs encode either totally unknown proteins or proteins that were considered as irrelevant. Seven SOS+ candidate genes are induced following gamma irradiation. The in planta function of several of the SOS-inducing clones was investigated using T-DNA insertional mutants or RNA interference. Only one SOS+ candidate, among those examined, exhibited a defined phenotype: silenced plants for DUT1 were sensitive to 5-fluoro-uracil (5FU), as is the case of the leaky dut-1 mutant in E. coli that are affected in dUTPase activity. dUTPase is essential to prevent uracil incorporation in the course of DNA replication.
Resumo:
Homologous recombination catalyzed by the RAD51 recombinase is essential for maintaining genome integrity upon the induction of DNA double strand breaks and other DNA lesions. By enhancing the recombinase activity of RAD51, RAD51AP1 (RAD51-associated protein 1) serves a key role in homologous recombination-mediated chromosome damage repair. We show here that RAD51AP1 harbors two distinct DNA binding domains that are both needed for maximal protein activity under physiological conditions. We have finely mapped the two DNA binding domains in RAD51AP1 and generated mutant variants that are impaired in either or both of the DNA binding domains. Examination of these mutants reveals that both domains are indispensable for RAD51AP1 function in cells. These and other results illuminate the mechanistic basis of RAD51AP1 action in homologous DNA repair.
Resumo:
Aberrant DNA replication is a primary cause of mutations that are associated with pathological disorders including cancer. During DNA metabolism, the primary causes of replication fork stalling include secondary DNA structures, highly transcribed regions and damaged DNA. The restart of stalled replication forks is critical for the timely progression of the cell cycle and ultimately for the maintenance of genomic stability. Our previous work has implicated the single-stranded DNA binding protein, hSSB1/NABP2, in the repair of DNA double-strand breaks via homologous recombination. Here, we demonstrate that hSSB1 relocates to hydroxyurea (HU)-damaged replication forks where it is required for ATR and Chk1 activation and recruitment of Mre11 and Rad51. Consequently, hSSB1-depleted cells fail to repair and restart stalled replication forks. hSSB1 deficiency causes accumulation of DNA strand breaks and results in chromosome aberrations observed in mitosis, ultimately resulting in hSSB1 being required for survival to HU and camptothecin. Overall, our findings demonstrate the importance of hSSB1 in maintaining and repairing DNA replication forks and for overall genomic stability.