988 resultados para Processing steps
Resumo:
The microbiological quality of beef and meat products is strongly influenced by the conditions of hygiene prevailing during their production and handling. Without proper hygienic control, the environment in slaughterhouses and butcher shops can act as an important source of microbiological contamination. To identify the main points of microbiological contamination in the beef processing chain, 443 samples of equipment, installations and products were collected from 11 establishments (1 slaughterhouse and 10 butcher shops) located in the state of Paraná, Brazil. The microbiological quality of all the samples was evaluated using Petri dishes to obtain counts of mesophilic aerobes (AC), total coliforms, Escherichia coli (EC), yeasts and molds (YM). The main contamination points identified in butcher shops, in decreasing order, were stainless steel boxes, beef tenderizers, grinders, knives, mixers, sausage stuffers, plastic boxes, floors and drains. In the slaughterhouse, these points were sausage stuffers, platforms, floors and drains. The most severely contaminated products were fresh sausages and ground beef. This information about the main points of microbiological contamination in the beef processing chain is expected to aid professionals responsible for hygiene in similar establishments to set up proper hygienic procedures to prevent or reduce microbiological contamination of beef and meat products.
Resumo:
Genetic, Prenatal and Postnatal Determinants of Weight Gain and Obesity in Young Children – The STEPS Study University of Turku, Faculty of Medicine, Department of Paediatrics, University of Turku Doctoral Program of Clinical Investigation (CLIPD), Turku Institute for Child and Youth Research. Conditions of being overweight and obese in childhood are common health problems with longlasting effects into adulthood. Currently 22% of Finnish boys and 12% of Finnish girls are overweight and 4% of Finnish boys and 2% of Finnish girls are obese. The foundation for later health is formed early, even before birth, and the importance of prenatal growth on later health outcomes is widely acknowledged. When the mother is overweight, had high gestational weight gain and disturbances in glucose metabolism during pregnancy, an increased risk of obesity in children is present. On the other hand, breastfeeding and later introduction of complementary foods are associated with a decreased obesity risk. In addition to these, many genetic and environmental factors have an effect on obesity risk, but the clustering of these factors is not extensively studied. The main objective of this thesis was to provide comprehensive information on prenatal and early postnatal factors associated with weight gain and obesity in infancy up to two years of age. The study was part of the STEPS Study (Steps to Healthy Development), which is a follow-up study consisting of 1797 families. This thesis focused on children up to 24 months of age. Altogether 26% of boys and 17% of girls were overweight and 5% of boys and 4% of girls were obese at 24 months of age according to New Finnish Growth references for Children BMI-for-age criteria. Compared to children who remained normal weight, the children who became overweight or obese showed different growth trajectories already at 13 months of age. The mother being overweight had an impact on children’s birth weight and early growth from birth to 24 months of age. The mean duration of breastfeeding was almost 2 months shorter in overweight women in comparison to normal weight women. A longer duration of breastfeeding was protective against excessive weight gain, high BMI, high body weight and high weight-for-length SDS during the first 24 months of life. Breast milk fatty acid composition differed between overweight and normal weight mothers, and overweight women had more saturated fatty acids and less n-3 fatty acids in breast milk. Overweight women also introduced complementary foods to their infants earlier than normal weight mothers. Genetic risk score calculated from 83 obesogenic- and adiposity-related single nucleotide polymorphisms (SNPs) showed that infants with a high genetic risk for being overweight and obese were heavier at 13 months and 24 months of age than infants with a low genetic risk, thus possibly predisposing to later obesity in obesogenic environment. Obesity Risk Score showed that children with highest number of risk factors had almost 6-fold risk of being overweight and obese at 24 months compared to children with lowest number of risk factors. The accuracy of the Obesity Risk Score in predicting overweight and obesity at 24 months was 82%. This study showed that many of the obesogenic risk factors tend to cluster within children and families and that children who later became overweight or obese show different growth trajectories already at a young age. These results highlight the importance of early detection of children with higher obesity risk as well as the importance of prevention measures focused on parents. Keywords: Breastfeeding, Child, Complementary Feeding, Genes, Glucose metabolism, Growth, Infant Nutrition Physiology, Nutrition, Obesity, Overweight, Programming
Resumo:
Aiming at improving the quality of Perna perna mussels cultivated and commercialized in Ubatuba, SP, Brazil, the growth and elimination of Staphylococcus aureus and Bacillus cereus artificially inoculated in mussels were studied. The inoculation was carried out in "in natura" and pre-cooked mussels for 30 min, and after that the mussels were kept for 10 hours at room temperature (25 ± 1 °C) and under refrigeration (7 ± 1 °C). Six thermal treatments were evaluated: three using steam (5, 10 and 15 minutes) and three in boiling water (5, 10 and 15 minutes), in order to find the best time/temperature binomial to provide pathogenic control. Yield and physical-chemical and sensory characteristics were evaluated. All thermal treatments were efficient to eliminate microorganisms in 2 logarithmic cycles. However, the boiling water treatments presented better results than the steam treatments. The physical-chemical and sensory analyses did not show statistical differences among the thermal treatments studied. The best performances were reached in the shortest times of heat exposure. Overall, the treatments in boiling water presented better results than the steam treatments.
Resumo:
This study is done to examine waste power plant’s optimal processing chain and it is important to consider from several points of view on why one option is better than the other. This is to insure that the right decision is made. Incineration of waste has devel-oped to be one decent option for waste disposal. There are several legislation matters and technical options to consider when starting up a waste power plant. From the tech-niques pretreatment, burner and flue gas cleaning are the biggest ones to consider. The treatment of incineration residues is important since it can be very harmful for the envi-ronment. The actual energy production from waste is not highly efficient and there are several harmful compounds emitted. Recycling of waste before incineration is not very typical and there are not many recycling options for materials that cannot be easily re-cycled to same product. Life cycle assessment is a good option for studying the envi-ronmental effect of the system. It has four phases that are part of the iterative study process. In this study the case environment is a waste power plant. The modeling of the plant is done with GaBi 6 software and the scope is from gate-to-grave. There are three different scenarios, from which the first and second are compared to each other to reach conclusions. Zero scenario is part of the study to demonstrate situation without the power plant. The power plant in this study is recycling some materials in scenario one and in scenario two even more materials and utilize the bottom ash more ways than one. The model has the substitutive processes for the materials when they are not recycled in the plant. The global warming potential results show that scenario one is the best option. The variable costs that have been considered tell the same result. The conclusion is that the waste power plant should not recycle more and utilize bottom ash in a number of ways. The area is not ready for that kind of utilization and production from recycled materials.
Resumo:
Despite its high nutritional value, soymilk consumption in Western countries is limited mainly due to undesirable flavors developed during the traditional elaboration process. Brazil nut (Bertholletia excelsa) has pleasant flavor and recognized nutritional value. Thus, the aim of this work was to elaborate a soy and Brazil nut beverage exploring the use of two national products of high nutritional quality. The process for manufacturing a soy and Brazil nut beverage consisted of elaboration, formulation, and homogenization of soymilk and Brazil nut milk. The addition of five levels (10, 20, 30, 40, and 50%) of Brazil nut milk to soy beverages was investigated. Although no significant differences in consumer average preference (p > 0.05) were observed among the beverages, analyzing both the consumer preference frequency distribution of the products and the Internal Preference Mapping (IPM), it was possible to conclude that the beverage with 30% of Brazil nut milk reached the most adequate performance demonstrating the sensory benefits Brazil nuts brought to the product. Regarding proximate composition, it did not present a better performance in terms of nutritional value, except for the oil content. The soy and Brazil nut beverage presented visual stability and no phase separation despite the non-stability shown by Brazil nut beverage itself. When Brazil nut milk was added to soy beverage, the final product became whiter than soy beverage, which is appealing to consumers who normally search for a clearer soymilk. The soy and Brazil nut beverage processing can be considered an alternative to increase the use of Brazil nuts in the Brazilian diet.
Resumo:
The determination of the sterilization value for low acid foods in retorts includes a critical evaluation of the factory's facilities and utilities, validation of the heat processing equipment (by heat distribution assays), and finally heat penetration assays with the product. The intensity of the heat process applied to the food can be expressed by the Fo value (sterilization value, in minutes, at a reference temperature of 121.1 °C, and a thermal index, z, of 10 °C, for Clostridium botulinum spores). For safety reasons, the lowest value for Fo is frequently adopted, being obtained in heat penetration assays as indicative of the minimum process intensity applied. This lowest Fo value should always be higher than the minimum Fo recommended for the food in question. However, the use of the Fo value for the coldest can fail to statistically explain all the practical occurrences in food heat treatment processes. Thus, as a result of intense experimental work, we aimed to develop a new focus to determine the lowest Fo value, which we renamed the critical Fo. The critical Fo is based on a statistical model for the interpretation of the results of heat penetration assays in packages, and it depends not only on the Fo values found at the coldest point of the package and the coldest point of the equipment, but also on the size of the batch of packages processed in the retort, the total processing time in the retort, and the time between CIPs of the retort. In the present study, we tried to explore the results of physical measurements used in the validation of food heat processes. Three examples of calculations were prepared to illustrate the methodology developed and to introduce the concept of critical Fo for the processing of canned food.
Resumo:
Guava nectars were formulated for approximately 10, 12, or 14 ºBrix, with 40% guava pulp. Sodium benzoate, 500 mg.kg-1 was used as preservative. The Brix value was adjusted with saturated sucrose syrup. The guava nectar was pasteurized (85 ºC/42 seconds) in tubular heat exchanger and then hot filled in 500 mL white glass bottles. The products were stored either at room temperature (25 ± 5 ºC) or refrigerated (5 ± 2 ºC) under fluorescent light exposure and analyzed on the day after processing (time zero) and also 40, 80, and 120 days of storage. Eight compounds were identified and quantified by Gas Chromatography (GC) -Mass Spectrometry (MS): hexanal, (E)-hex-2-enal, 1-hexenol, (Z)-hex-3-enol, (Z)-hex-3-enyl acetate, phenyl-3-propyl acetate, cinnamyl acetate, and acetic acid. There was no significant effect of thermal treatment on the volatile compound concentrations, except for a significant decrease (p = 0.0001) in hexanal and (Z)-hex-3-enyl acetate (p = 0.0029). As for the storage time, there was a much greater decrease in the esters contents, such as (Z)-hex-3-enyl and phenyl-3-propyl acetates. Cinnamyl acetate had the greatest decrease over storage time. Refrigeration was better than room temperature for guava nectar volatile compounds stability over storage time, mainly for esters compounds, which are important for the product aroma and flavor
Resumo:
The Brazil nut (Bertholletia excelsea H. B. K.) is noteworthy for its high content of lipids and proteins of elevated biological value and these factors justify the need for further research and incentives for the manufacturing of new trade products. In the present study we sought new forms of technological use of these nuts by the food industry, through their processing as flour, with no alteration in its energy content. The results after its elaboration showed a product with high energy value (431.48 kcal.100 g-1), protein content of 45.92 g.100 g-1, and fiber of 17.14%. The thermal analyses indicate that the introduction of another protein component, such as soy protein isolate, does not alter the reactions or thermal behavior. On the other hand, morphological analyses revealed granular structures similar to the structure of globular proteins. It was observed that after processing to obtain the flour, the product maintains its protein-energy content, as well as its characteristics when subjected to high temperatures.
Resumo:
The objective of this research project was to study the drying of soymilk residue in a pneumatic flash dryer, using response Surface Methodology (RSM), and to evaluate the quality of the dried residue. Soymilk residue, also known as okara, was provided by a Brazilian soymilk factory. RSM showed that for a 120 second drying cycle, the lower the residue moisture contents (y) obtained, the higher the recirculation rates (x1), regardless of the air drying temperature (x2), and it could be expressed by the equation y = 7.072 - 7.92x1, with R² = 92,92%. It is possible to obtain okara with 10% of moisture (dwb) under the condition x1=1.25, equivalent to RR = 61%, with air drying temperatures ranging from 252 °C to 308 °C. The dried okara obtained through Central Compound Rotational Design (CCRD) presented a centesimal composition similar to the okara dried in a tray dryer, known as the original okara. There were significant variations (p < 0.05) in the Emulsifying Capacity (EC), Emulsion Stability (ES) and Protein Solubility (PS) between the dehydrated residues obtained. It was concluded that the flash drying of okara is technically feasible and that the physicochemical composition of the residue was not altered; on the contrary, the process promoted a positive effect on the technological functional properties.
Effect of processing on antioxidant potential and total phenolics content in beet (Beta vulgaris L.)
Resumo:
The antioxidant capacity of beet is associated with non-nutritive constituents, such as phenolic compounds. The purpose of this research was to evaluate the effect of two different heat-processing techniques (drying and canned) on the antioxidant potential (ABTS) and phenolics content of beets. A forced air circulation dehydrator was used for the drying. Drying at high temperatures (100 + 90 °C/5.6 hours; 90 °C/6 hours) increased the antioxidant potential of the processed products while mild drying conditions decreased it (80 °C/6 hours; 100 + 70 °C/6 hours) or had no effect on it (70 °C/7 hours; 100 + 80 °C/6 hours). For the canned products, the antioxidant potential did not differ according to the pH (4.2 to 3.8) for any of the four acids tested. Some processing methods influenced the antioxidant potential of the processed products, and this was also dependent on changes in the total phenolics content.
Resumo:
Passion fruit is widely consumed due to its pleasant flavour and aroma acidity, and it is considered very important a source of minerals and vitamins. It is used in many products such as ice-cream, mousses and, especially, juices. However, the processing of passion fruit juice may modify the composition and biodisponibility of the bioactive compounds. Investigations of the effects of processing on nutritional components in tropical juices are scarce. Frequently, only losses of vitamin C are evaluated. The objective of this paper is to investigate how some operations of passion fruit juice processing (formulation/homogeneization/thermal treatment) affect this product's chemical and physicochemical characteristics. The results showed that the chemical and physicochemical characteristics are little affected by the processing although a reduction in vitamin C contents and anthocyanin, large quantities of carotenoids was verified even after the pasteurization stage.
Resumo:
The aim of this work was to make tofu from soybean cultivar BRS 267 under different processing conditions in order to evaluate the influence of each treatment on the product quality. A fractional factorial 2(5-1) design was used, in which independent variables (thermal treatment, coagulant concentration, coagulation time, curd cutting, and draining time) were tested at two different levels. The response variables studied were hardness, yield, total solids, and protein content of tofu. Polynomial models were generated for each response. To obtain tofu with desirable characteristics (hardness ~4 N, yield 306 g tofu.100 g-1 soybeans, 12 g proteins.100 g-1 tofu and 22 g solids.100 g-1 tofu), the following processing conditions were selected: heating until boiling plus 10 minutes in water bath, 2% dihydrated CaSO4 w/w, 10 minutes coagulation, curd cutting, and 30 minutes draining time.
Resumo:
Umbu pulp is an important product in the economy of the northeastern region of Brazil, and its preservation can be ensured by heat treatment. A complete factorial design with 2 factors (time and temperature) and 3 central points was used to verify the effect of the HTST process on the physicochemical, chemical, physical, microbiological, and sensory qualities of umbu pulps. The results showed that the heat treatments applied resulted in products without significant alterations on the physicochemical, chemical, and microbiological characteristics. With respect to color, the parameters L and a* were altered by increases in temperature indicating by darkening of color. The sensory evaluation indicated that a treatment of 88 °C for 10 seconds was the best processing condition due to the greater similarity of the resulting product to the reference sample (blanched pulp).
Resumo:
Cooked vegetables are commonly used in the preparation of ready-to-eat foods. The integration of cooking and cooling of carrots and vacuum cooling in a single vessel is described in this paper. The combination of different methods of cooking and vacuum cooling was investigated. Integrated processes of cooking and vacuum cooling in a same vessel enabled obtaining cooked and cooled carrots at the final temperature of 10 ºC, which is adequate for preparing ready-to-eat foods safely. When cooking and cooling steps were performed with the samples immersed in boiling water, the effective weight loss was approximately 3.6%. When the cooking step was performed with the samples in boiling water or steamed, and the vacuum cooling was applied after draining the boiling water, water loss ranged between 15 and 20%, which caused changes in the product texture. This problem can be solved with rehydration using a small amount of sterile cold water. The instrumental textural properties of carrots samples rehydrated at both vacuum and atmospheric conditions were very similar. Therefore, the integrated process of cooking and vacuum cooling of carrots in a single vessel is a feasible alternative for processing such kind of foods.