781 resultados para Process-dissociation Framework
Resumo:
This paper addresses the two opposing extremes of standardisation in franchising and the dynamics of sales in search of a juncture point in order to reduce franchisees’ uncertainties in sales and improve sales performance. A conceptual framework is developed based on both theory and practice in order to investigate the sales process of a specific franchise network. The research is conducted over a period of six weeks in form of a customised sales report considering the sales funnel concept and performance indicators along the sales process. The received quantitative data is analysed through descriptive statistics and logistic regressions in respect to what variations in the sales process can be discovered and what practices yield higher performance. The results indicate an advantage of a prioritisation guideline regarding the activities and choices to make as a salesperson over strict standardisation. Defining the sales funnel plus engaging in the process of monitoring sales in itself has proven to be a way of reducing uncertainty as the franchisor and franchisees alike inherently gain a greater understanding of the process. The extended knowledge gained from this research allowed for both practical as well as theoretical implications and expands the knowledge on standardisation of sales and the appropriateness of the sales funnel and its management for dealing with the dilemma between standardisation and flexibility of sales in franchising contexts.
Resumo:
Variability management is one of the major challenges in software product line adoption, since it needs to be efficiently managed at various levels of the software product line development process (e.g., requirement analysis, design, implementation, etc.). One of the main challenges within variability management is the handling and effective visualization of large-scale (industry-size) models, which in many projects, can reach the order of thousands, along with the dependency relationships that exist among them. These have raised many concerns regarding the scalability of current variability management tools and techniques and their lack of industrial adoption. To address the scalability issues, this work employed a combination of quantitative and qualitative research methods to identify the reasons behind the limited scalability of existing variability management tools and techniques. In addition to producing a comprehensive catalogue of existing tools, the outcome form this stage helped understand the major limitations of existing tools. Based on the findings, a novel approach was created for managing variability that employed two main principles for supporting scalability. First, the separation-of-concerns principle was employed by creating multiple views of variability models to alleviate information overload. Second, hyperbolic trees were used to visualise models (compared to Euclidian space trees traditionally used). The result was an approach that can represent models encompassing hundreds of variability points and complex relationships. These concepts were demonstrated by implementing them in an existing variability management tool and using it to model a real-life product line with over a thousand variability points. Finally, in order to assess the work, an evaluation framework was designed based on various established usability assessment best practices and standards. The framework was then used with several case studies to benchmark the performance of this work against other existing tools.
Resumo:
Structuring integrated social-ecological systems (SES) research remains a core challenge for achieving sustainability. Numerous concepts and frameworks exist, but there is a lack of mutual learning and orientation of knowledge between them. We focus on two approaches in particular: the ecosystem services concept and Elinor Ostrom’s diagnostic SES framework. We analyze the strengths and weaknesses of each and discuss their potential for mutual learning. We use knowledge types in sustainability research as a boundary object to compare the contributions of each approach. Sustainability research is conceptualized as a multi-step knowledge generation process that includes system, target, and transformative knowledge. A case study of the Southern California spiny lobster fishery is used to comparatively demonstrate how each approach contributes a different lens and knowledge when applied to the same case. We draw on this case example in our discussion to highlight potential interlinkages and areas for mutual learning. We intend for this analysis to facilitate a broader discussion that can further integrate SES research across its diverse communities.
Resumo:
Metal casting is a process governed by the interaction of a range of physical phenomena. Most computational models of this process address only what are conventionally regarded as the primary phenomena – heat conduction and solidification. However, to predict other phenomena, such as porosity formation, requires modelling the interaction of the fluid flow, heat transfer, solidification and the development of stressdeformation in the solidified part of the casting. This paper will describe a modelling framework called PHYSICA[1] which has the capability to stimulate such multiphysical phenomena.
Resumo:
According to the U.S. National Environmental Policy Act of 1969 (NEPA), federal action to manipulate habitat for species conservation requires an environmental impact statement, which should integrate natural, physical, economic, and social sciences in planning and decision making. Nonetheless, most impact assessments focus disproportionately on physical or ecological impacts rather than integrating ecological and socioeconomic components. We developed a participatory social-ecological impact assessment (SEIA) that addresses the requirements of NEPA and integrates social and ecological concepts for impact assessments. We cooperated with the Bureau of Land Management in Idaho, USA on a project designed to restore habitat for the Greater Sage-Grouse (Centrocercus urophasianus). We employed questionnaires, workshop dialogue, and participatory mapping exercises with stakeholders to identify potential environmental changes and subsequent impacts expected to result from the removal of western juniper (Juniperus occidentalis). Via questionnaires and workshop dialogue, stakeholders identified 46 environmental changes and associated positive or negative impacts to people and communities in Owyhee County, Idaho. Results of the participatory mapping exercises showed that the spatial distribution of social, economic, and ecological values throughout Owyhee County are highly associated with the two main watersheds, wilderness areas, and the historic town of Silver City. Altogether, the SEIA process revealed that perceptions of project scale varied among participants, highlighting the need for specificity about spatial and temporal scales. Overall, the SEIA generated substantial information concerning potential impacts associated with habitat treatments for Greater Sage-Grouse. The SEIA is transferable to other land management and conservation contexts because it supports holistic understanding and framing of connections between humans and ecosystems. By applying this SEIA framework, land managers and affected people have an opportunity to fulfill NEPA requirements and develop more comprehensive management plans that better reflect the linkages of social-ecological systems.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
The origins of agriculture and the shift from hunting and gathering to committed agriculture is regarded as one of the major transitions in human history. Archeologists and anthropologists have invested significant efforts in explaining the origins of agriculture. A period of gathering intensification and experimentation and pursuing a mixed economic strategy seems the most plausible explanation for the transition to agriculture and provides an approach to study a process in which several nonlinear processes may have played a role. However, the mechanisms underlying the transition to full agriculture are not completely clear. This is partly due to the nature of the archeological record, which registers a practice only once it has become clearly established. Thus, points of transitions have limited visibility and the mechanisms involved in the process are difficult to untangle. The complexity of such transitions also implies that shifts can be distinctively different in particular environments and under varying historical and social conditions. In this paper we discuss some of the elements involved in the transition to food production within the framework of resilience theory. We propose a theoretical conceptual model in which the resilience of livelihood strategies lies at the intersection of three spheres: the environmental, economical, and social domains. Transitions occur when the rate of change, in one or more of these domains, is so elevated or its magnitude so large that the livelihood system is unable to bounce back to its original state. In this situation, the system moves to an alternative stable state, from one livelihood strategy to another.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
This paper studies the use of play as a method to unlock creativity and innovation within a community of practice (a group of individuals who share a common interest and who see value in interaction to enhance their understanding). An analysis of communities of practice and the value of play informs evaluation of two case studies exploring the development of communities of practice, one within the discipline of videogames and one which bridges performing arts and videogames. The case studies provide qualitative data from which the potential of play as a method to inspire creativity and support the development of a potential community of practice is recognised. Establishing trust, disruption of process through play and reflection are key steps proposed in a ‘context provider’s framework’ for individuals or organisations to utilise in the design of activities to support creative process and innovation within a potential community of practice.
Resumo:
The EU represents a transforming educational space, where national and supranational boundaries in educational governance are becoming blurred. The EU has become an important actor in educational governance and an important arena for policy learning and transfer. This paper explores how the process of reshaping the educational space manifests itself in the process of the Europeanization of VET policy in the case of Estonia. In Estonia, this process was followed by the growth of executive VET institutions and has developed from rather uncritical initial policy transfer to more active learning from the EU, although conformism can still be seen in cases of the introduction of standardizing policy tools. (DIPF/Orig.)
Resumo:
Creative ways of utilising renewable energy sources in electricity generation especially in remote areas and particularly in countries depending on imported energy, while increasing energy security and reducing cost of such isolated off-grid systems, is becoming an urgently needed necessity for the effective strategic planning of Energy Systems. The aim of this research project was to design and implement a new decision support framework for the optimal design of hybrid micro grids considering different types of different technologies, where the design objective is to minimize the total cost of the hybrid micro grid while at the same time satisfying the required electric demand. Results of a comprehensive literature review, of existing analytical, decision support tools and literature on HPS, has identified the gaps and the necessary conceptual parts of an analytical decision support framework. As a result this research proposes and reports an Iterative Analytical Design Framework (IADF) and its implementation for the optimal design of an Off-grid renewable energy based hybrid smart micro-grid (OGREH-SμG) with intra and inter-grid (μG2μG & μG2G) synchronization capabilities and a novel storage technique. The modelling design and simulations were based on simulations conducted using HOMER Energy and MatLab/SIMULINK, Energy Planning and Design software platforms. The design, experimental proof of concept, verification and simulation of a new storage concept incorporating Hydrogen Peroxide (H2O2) fuel cell is also reported. The implementation of the smart components consisting Raspberry Pi that is devised and programmed for the semi-smart energy management framework (a novel control strategy, including synchronization capabilities) of the OGREH-SμG are also detailed and reported. The hybrid μG was designed and implemented as a case study for the Bayir/Jordan area. This research has provided an alternative decision support tool to solve Renewable Energy Integration for the optimal number, type and size of components to configure the hybrid μG. In addition this research has formulated and reported a linear cost function to mathematically verify computer based simulations and fine tune the solutions in the iterative framework and concluded that such solutions converge to a correct optimal approximation when considering the properties of the problem. As a result of this investigation it has been demonstrated that, the implemented and reported OGREH-SμG design incorporates wind and sun powered generation complemented with batteries, two fuel cell units and a diesel generator is a unique approach to Utilizing indigenous renewable energy with a capability of being able to synchronize with other μ-grids is the most effective and optimal way of electrifying developing countries with fewer resources in a sustainable way, with minimum impact on the environment while also achieving reductions in GHG. The dissertation concludes with suggested extensions to this work in the future.
Resumo:
This chapter examines community media projects in Scotland as social processes that nurture knowledge through participation in production. A visual and media anthropology framework (Ginsburg, 2005) with an emphasis on the social context of media production informs the analysis of community media. Drawing on community media projects in the Govan area of Glasgow and the Isle of Bute, the techniques of production foreground “the relational aspects of filmmaking” (Grimshaw and Ravetz, 2005: 7) and act as a catalyst for knowledge and networks of relations embedded in time and place. Community media is defined here as a creative social process, characterised by an approach to production that is multi-authored, collaborative and informed by the lives of participants, and which recognises the relevance of networks of relations to that practice (Caines, 2007: 2). As a networked process, community media production is recognised as existing in collaboration between a director or producer, such as myself, and organisations, institutions and participants, who are connected through a range of identities, practices and place. These relations born of the production process reflect a complex area of practice and participation that brings together “parallel and overlapping public spheres” (Meadows et al., 2002: 3). This relates to broader concerns with networks (Carpentier, Servaes and Lie, 2003; Rodríguez, 2001), both revealed during the process of production and enhanced by it, and how they can be described with reference to the knowledge practice of community media.
Resumo:
A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.
Resumo:
The spike-diffuse-spike (SDS) model describes a passive dendritic tree with active dendritic spines. Spine-head dynamics is modelled with a simple integrate-and-fire process, whilst communication between spines is mediated by the cable equation. Here we develop a computational framework that allows the study of multiple spiking events in a network of such spines embedded in a simple one-dimensional cable. This system is shown to support saltatory waves as a result of the discrete distribution of spines. Moreover, we demonstrate one of the ways to incorporate noise into the spine-head whilst retaining computational tractability of the model. The SDS model sustains a variety of propagating patterns.